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Abstract 

In this paper, I have researched and developed solutions for optimizing the stream 
compaction algorithmic function using the Compute Unified Device Architecture 
(CUDA). The stream compaction is a common parallel primitive, an essential building 
block for many data processing algorithms, whose optimization improves the performance 
of a wide class of parallel algorithms useful in data processing. A particular interest in 
this research was to develop solutions for optimizing the stream compaction algorithmic 
function that offers optimal solutions over an entire range of CUDA enabled GPUs: Tesla 
GT200, Fermi GF100 and the latest Kepler GK104 architecture, released on 22 March 
2012. In order to confirm the utility of the developed optimization solutions, I have 
extensively benchmarked and evaluated the performance of the stream compaction 
algorithmic function in CUDA. 
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 Introduction 

For a long time, graphics processing units (GPU) have been used solely as graphic 
accelerators, for graphic rendering specific functions. The increased necessity for 
improved high resolution three-dimensional rendering and a large number of frames per 
second have led to the GPUs’ evolvement. By the end of the 1990s, these units have 
become programmable at a hardware level and in 2006, by unifying both software and 
hardware components, the NVIDIA company has released the Compute Unified Device 
Architecture (CUDA), a new parallel programming model based on the GPU’s 
computational processing power for solving complex processing tasks more efficiently 
than using central processing units (CPUs) [1]. This development has made it possible to 
accelerate a broad class of data processing applications. In this context, the improvement 
of the data extraction and parallel processing can be achieved using high-performance 
basic functional blocks (and among them, the stream compaction algorithmic function), 
designed to offer optimum performance and efficiency, based on graphics processing 
units with multiple processing cores.  

With the introduction of CUDA-C language, application developers are able to harness, 
using a standard programming language, the huge parallel processing power offered by 
the latest generation of graphics processing units. CUDA enables developers to specify 
how tasks are decomposed in order to be processed by many parallel threads and how are 
these tasks executed by the GPU [2]. The high level of control offered by the CUDA-C 
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language facilitates the development of high-performance basic functions useful for 
optimizing a wide range of computational tasks that require high processing power. 

The CUDA processing instructions flow consists of 4 stages (Figure 1):  
1. In Stage 1, data is copied from the system’s memory into the graphics processing 

unit’s memory. 
2. In Stage 2, the graphics processing unit receives the processing request 

instruction.  
3. In Stage 3, every processing core of the GPU parallel processes its data and stores 

the result in the GPU’s memory.  
4. In Stage 4, the results are copied back from the GPU memory to the system 

memory  

 
Figure 1. The CUDA processing instructions flow 

The latest three CUDA-enabled graphic cards are GTX 280, GTX 480 and GTX 680. The  
GTX 280 from the Tesla GT200 architecture, launched on 16 Jun 2008, is based on 65 nm 
fabrication technology, has 1.4 billion of transistors, 240 CUDA cores and 30 streaming 
multiprocessors. The graphics clock runs at 602 MHz, the processor clock at 1296 MHz, 
it comes with 1024 MB of memory in the standard configuration, having an effective 
clock of 1107 MHz, a 512-bit gDDR3 memory interface width and 141.7 GB/sec memory 
bandwidth. It has a texture fill rate of 48.2 billion/sec, 80 texture units, 32 ROP units and 
the maximum board power (TDP) of 236 Watts.  

The GTX 480 from the Fermi GF100 architecture, launched on 26 March 2010, is based 
on 40 nm fabrication technology, has 3.2 billion of transistors, 480 CUDA cores and 15 
streaming multiprocessors. The graphics clock runs at 700 MHz, the processor clock at 



 
1401 MHz, it comes with 1536 MB of memory in the standard configuration,  having an 
effective clock of 3700 MHz, a 384-bit gDDR5 memory interface width and 177.4 
GB/sec memory bandwidth. It has a texture fill rate of 42 billion/sec, 60 texture units, 48 
ROP units and the maximum board power (TDP) of 250 Watts. 

The newest CUDA graphic card, the GTX 680 from the Kepler GK104 architecture, 
released on 22 March 2012, is based on 28 nm fabrication technology, has 3.54 billion of 
transistors, 1536 CUDA cores and 8 streaming multiprocessors. The graphics clock runs 
at 1006 MHz, the boost clock at 1058 MHz, it comes with 2048 MB of memory in the 
standard configuration, having an effective clock of 6000 MHz, a 256-bit gDDR5 
memory interface width and 192.2 GB/sec memory bandwidth. It has a texture fill rate of 
128.8 billion/sec, 128 texture units, 32 ROP units and the maximum board power (TDP) 
of 170 Watts. The GK104 poses significant differences regarding the streaming 
multiprocessors, that are now called SMX units and incorporates several important 
architectural changes in order to deliver an improved performance and power efficiency.  

In the following, I depict the stream compaction function, an overview regarding different 
approaches in designing it and an efficient algorithmic method for developing and 
implementing the stream compaction algorithmic function in the CUDA architecture. 

 The Stream Compaction Function 

The stream compaction (stream reduction) is an important algorithmic function, a 
primitive building block, useful in many algorithms that benefit from the massive 
parallelism. Highly parallel algorithms often produce sparse data or data containing 
unwanted elements, especially in the situations when each input element produces a 
varying number of output elements. In order to maintain the overall performance, it is 
often necessary to compact the data before reaching the next processing steps. Using the 
stream compaction, it is obtained a compacted stream that provides a balanced 
computational load for all the processors. 

Using the huge computational power provided by the CUDA parallel architecture, the 
stream compaction algorithmic function’s optimization is a solution to improve the 
performance of all data processing algorithms that require stream compaction. Therefore, 
the stream compaction function can improve the performance of a wide class of parallel 
algorithms useful in data processing [3]. 

In the following, I describe some situations in which the stream compaction is 
successfully applied. In the parallel breadth first tree traversal, after each traversal step, 
invalid nodes must be pruned from the list of open nodes because, otherwise, an 
exponential increase of the nodes number would take place [4]. Similar problems are 
encountered in other situations, for example those related to image processing techniques 
that simulate light interaction with various surfaces [5] or GPU-based collision detection 
issues [6]. 

The easiest implementation of the stream compaction is through a sequential algorithm, 
running on a uniprocessor machine: valid elements are moved from the input vector to the 



output one. On parallel architectures, the implementation of an efficient stream 
compaction is more difficult because for each input element of the stream, the output 
position critically depends on the previous state of the element, before applying the 
compaction. Although it seems to be the most appropriate, the implementation that 
synchronizes after each element has been processed is very inefficient.  

In the literature, there are various approaches to overcome this problem, most of them 
being based on performing a parallel prefix sum [7], [8]. The parallel prefix sum is 
applied on a stream containing  a "0" for each invalid element and a "1" for each valid 
element of the input vector. As a result of this operation, it is obtained a stream containing 
for each element, the number of valid elements preceding it. This information is useful for 
moving each valid element in the new location. 

In 2005, this approach was implemented on a GPU [9]. In that moment, the graphics 
processing units did not provide random write access to memory and a binary search was 
used in order to find the input element corresponding to each output. In this case, the 
prefix sum has the 𝑂(𝑛) time complexity, the binary searches has the 𝑂(𝑙𝑜𝑔 𝑛) 
complexity, while the overall complexity is 𝑂(𝑛 ∙ 𝑙𝑜𝑔 𝑛). 

A similar approach was used later in [10]. In this case, the prefix sum has been improved 
by using a more efficient implementation, the binary search step remained unchanged and 
the total time complexity remained 𝑂(𝑛 ∙ 𝑙𝑜𝑔 𝑛). Another approach [6], [11] uses a tree 
containing the valid elements. The binary search step is performed by searching into the 
tree for the correct input element corresponding to each output. The time complexity 
remains the same as in the previous cases, 𝑂(𝑛 ∙ 𝑙𝑜𝑔 𝑛). 

In order to improve the time complexity, the algorithm has been applied to smaller data 
fragments of fixed size [12]. The 𝑘-size fragments are compacted, using the previous 
algorithms, using 𝑂(𝑘 ∙ 𝑙𝑜𝑔𝑘) steps. Then, the compacted fragments are concatenated 
using the GPU. This version of the algorithm provides a 𝑂(𝑛) time complexity.  

Nowadays, the graphics processing units incorporate specific hardware that facilitates the 
efficient implementation of stream compaction. In the literature there are a few results 
regarding this aspect, but the obtained performance is disappointing [12]. The modern 
graphics processing units also provide random write access to memory, which can be used 
to replace the binary search phase. This implementation has the time complexity 𝑂(𝑛) [9], 
[10]. 

The stream compaction is closely related to data sorting. A fast sorting technique that uses 
an efficient compaction algorithm is depicted in [13]. The stream compaction is useful in 
a variety of general purpose applications, including collision detection and sparse matrix 
compression, is the main method for transforming heterogeneous vectors, with elements 
of several types, in homogeneous vectors, with elements of the same type. This feature is 
particularly useful for those vectors in which only some elements are of interest for the 
analyzed problem. The stream compaction produces a smaller vector, containing only the 
elements of interest, that is being processed more efficiently and thus, the transfer times, 
particularly between the GPU and the CPU, are significantly reduced. 



 
The stream compaction is a filtering operation: a subset of elements are selected from an 
input vector and used to build an output array of smaller dimension, containing only the 
elements of interest for the studied problem. Formally, the stream compaction starts with 
an input vector 𝑣 = (𝑣1, 𝑣2, … , 𝑣𝑛) and a predicate 𝑝. The output vector contains only 
those elements of 𝑣 for which 𝑝(𝑣𝑖) is true, keeping the order of the input elements [9] 
(Figure 2). 

 
Figure 2. An example for the stream compaction algorithmic function  

As it was mentioned above, the graphics processing units on which Horn implemented the 
stream compaction in 2005 did not provide random write access to memory, so Horn has 
replaced this write operation with a sequence of binary search steps [9]. The compaction 
of 𝑛 elements was achieved by applying 𝑙𝑜𝑔 𝑛 binary search steps, but this technique 
required a large amount of resources. The native support for random write access in 
memory implemented in modern graphics processing units facilitates the design of stream 
compaction algorithms that are considerably more efficient. 

 Designing An Efficient Stream Compaction Algorithmic Function In Cuda 

 
In the following, I present an efficient method for designing and implementing the stream 
compaction algorithmic function in the CUDA architecture. The stream compaction 
algorithmic function that I have developed is useful for architectures based on multiple 
processing cores, as SIMD (Single Instruction, Multiple Data). In this case, the multiple 
data streams and the single instruction stream facilitate the parallel processing of data. 
The processing units are acting on different data elements, executing the same instruction. 
These systems are useful in specialized graphics problems and in sound processing. When 
designing the stream compaction algorithmic function, I have considered a number of 
technical issues for optimizing the performance: maximizing concurrent execution, 
minimizing synchronizations, reducing the bandwidth and memory requirements. In the 
following, 𝑣 = (𝑣1, 𝑣2, … , 𝑣𝑛) represents the input vector, 𝑝 is a predicate, used to select 
the elements of interest from the input vector.  

I have developed the stream compaction algorithmic function in three steps:  

Step 1. First, it is generated a temporary array containing: 
• a 1 for those elements of the input vector for which 𝑝(𝑣𝑖)  is true; 
• a 0 for those elements of the input vector for which 𝑝(𝑣𝑖) is false.  

Step 2. The parallel prefix sum algorithmic function [14] is applied to the vector 
obtained in Step 1. The result of this operation is a vector containing, for 
each element, the number of elements from the input vector prior to that 



item, for which 𝑝(𝑣𝑖) is true. Thus, each element of this new vector offers 
information about its position in the output vector.  

Step 3. The information obtained in Step 2 is then used to move each valid 
element in its new location, benefiting from the random write access to 
memory available in the latest generation of CUDA graphics processing 
units (Figure 3). 

 
Figure 3. An example of applying the algorithmic steps of the stream compaction algorithmic 

function  

In order to optimally process the stream compaction, I designed and developed the basic 
stream compaction algorithmic function as to first compute the thread block’s size, the 
number of blocks and the maximum number of threads per block, depending on the total 
number of elements that have to be processed. These parameters are needed to fully 
exploit the huge computational power of the GPU, obtaining thus a more efficient data 
compaction process. 

The function has been designed to allow the selection of the input array components, from 
one of the data types: integer, unsigned integer, float, double, long long or unsigned long 
long. The function also offers the possibility to set in advance the parameters of a 
configuration structure that are then passed as parameters to the BFABCompact function 
(Figure 4). 

As in the Step 2 of the stream compaction algorithmic function, the parallel prefix sum 
algorithmic function is applied to the vector obtained in the Step 1, the overall 
performance of the stream compaction algorithmic function is significantly influenced by 
the performance of the parallel prefix sum algorithmic function.  



 

Figure 4. Computing the parameters and calling the stream compaction algorithmic function in 
CUDA 

In the following section, I will outline several solutions for optimizing the performance of 
the stream compaction algorithmic function in CUDA, solutions that I have used for 
developing this function. 

 Solutions For Optimizing The Performance Of The Stream Compaction 
Algorithmic Function In Cuda 

By consulting the scientific literature and using a thorough analysis of the current state of 
knowledge, I have identified and developed a series of solutions for optimizing the 
performance of the stream compaction algorithmic function in CUDA: 

Solution 1 - calling the optimized parallel prefix sum function developed in CUDA. In the 
Step 2 of the stream compaction algorithmic function, I have used the optimized parallel 
prefix sum algorithmic function developed in CUDA [14]. This is the most important 
optimization technique applied in designing the stream compaction function and therefore 
a performance improvement of up to 45% was obtained compared to the case when 
running in this step a sequential algorithm, on the central processing unit. 

Solution 2 – optimizing the management of resources used in the processing tasks. 
Another important solution that I have addressed in the development and design of the 
stream compaction algorithmic function, in order to optimize data processing, consists in 
the optimal management of resources used for the processing tasks. For improving the 
software performance in CUDA, when threads are being defined, one must take into 
account the high latency of global memory. While the CPU architecture uses large caches 
to hide memory latencies, CUDA generates and uses thousands of active threads [15]. 
First, I have computed the thread block’s size, the number of blocks and the maximum 
number of threads per block, depending on the total number of elements that have to be 



processed. Therefore, I have obtained an optimal allocation of resources according to the 
tasks that must be processed, benefiting from the huge computational power provided by 
the GPU, improving the efficiency of the entire stream compaction process, which results 
in a substantial improvement in runtime compared to sequential implementations that are 
run on central processing units. 

Solution 3 - maximizing the concurrent execution of tasks. The graphics processing units 
execute and manage hundreds of concurrent threads, avoiding computational overloading 
and reducing the memory latency, as they provide 240 CUDA processing cores in the case 
of the GTX 280 graphic card, 480 CUDA processing cores for the GTX 480 graphic card 
and 1,536 CUDA processing cores for the GTX 680 graphic card. Thus, taking into 
account that each thread can independently process a part of the source code (as it has its 
own private memory, private registers and program counter) and that there are required 
hundreds of execution threads in order to fully employ the processing cores, I have 
optimized the tasks assigned to each available thread using thousands of active threads 
offered by the CUDA architecture for improving the software performance of the stream 
compaction function. Taking into account that processing a single element per thread does 
not generate an enough computational load for reducing the memory latency, I have 
allocated eight input elements to each thread. This happens when data is loaded from 
global to shared memory. Each execution thread reads two groups of four elements and 
then sequentially processes them.  

Solution 4 – managing shared memory bank conflicts. An important issue that I took into 
account when designing the stream compaction algorithmic function refers to managing 
shared memory bank conflicts. The stream compaction algorithmic function calls, during 
its execution, the optimized parallel prefix sum function developed in CUDA [14] and 
frequently uses the CUDA shared memory, composed of multiple memory banks 
(memory modules of equal size) [1].  Multiple data requests from the same memory bank 
generate shared memory banks conflicts. When a conflict occurs, the hardware device 
serializes memory operations and this makes all the threads wait until all memory requests 
have been fulfilled. This process consumes significant time resources. For solving this 
situation, I have designed the stream compaction algorithmic function as to use “warps” 
(groups of 32 threads) serialization markers, in order to divide the data blocks in more 
fragments that are being processed independently, using one warp for each fragment. I 
have preferred this technique because it helps avoiding shared memory bank conflicts and 
reduces the necessity of synchronization, as the synchronization is not required for 
sharing data within the same warp, unlike the case when the shared data belongs to 
different warps. The instructions are executed in SIMD mode (Single Instruction, 
Multiple Data).  

Solution 5 – reducing the number of synchronization operations between parallel tasks. 
The parallel task synchronization represents real time coordination and is often associated 
with inter thread communication. Synchronization is usually implemented by setting a 
synchronization point in the application from which a task cannot continue until another 
task reaches a certain point. In the Step 2 of the stream compaction algorithmic function, I 
have used the parallel prefix sum function developed in CUDA [14]. As I have used the 
parallel prefix sum function within a warp when designing this function, I have eliminated 



 
the necessity of synchronization points, because inter threads communication occurs at 
the warp level, so I do not have to synchronize in order to share data within the same 
warp. Each of the warps’ last elements is stored in the shared memory and finally a single 
warp sums the previously stored results.  

Solution 6 – minimizing the number of used registers. The CUDA graphic processing 
units use multiple threads (multithreading) to reduce the memory latency. The number of 
executing threads that can be simultaneously used is often limited by their registry 
requirements. I have minimized the number of used registers, thus maximizing the 
available number of threads.  

Solution 7 – optimizing the memory bandwidth. To design an efficient stream compaction 
algorithmic functions, I have first divided the input data into smaller fragments allocated 
to the thread blocks. Therefore, I have reduced the number of global memory calls and of 
the execution time, by optimally allocating thread blocks and using the GPU’s shared 
memory instead of the global one. 

Solution 8 - minimizing data transfers between the host and the device. Given that data 
transfers between the host and the device consume considerable computational resources, 
I have designed the stream compaction algorithmic function so that data transfers between 
the host and the device are minimal. I have reduced these transfers at the beginning, when 
data is being copied from host to the device memory and, in the end, when the compacted 
vector is copied back into the host memory. 

Solution 9 - reducing the number of executed instructions. The stream compaction 
algorithmic function that I have developed is useful for multicore architectures such as 
SIMD (Single Instruction, Multiple Data), in which case instructions are synchronous 
within each warp. I have noticed that, as the stream compaction process progresses, the 
number of active threads decreases, and when the number of threads is less than or equal 
to 32, it means that only the last warp remained to be executed. Within this warp, there is 
no need to synchronize the threads. Therefore, I have decided to remove these instructions 
and thus I have obtained an improvement in the overall performance.  

In the following I present a benchmark suite that I have developed in order to emphasize 
the performance of the stream compaction algorithmic function in CUDA, optimized 
using the above presented Solutions 1-9. 

 The Experimental Results And The Performance Analysis Of The Stream 
Compaction Algorithmic Function In Cuda 

In this section I analyze the performance of the above described parallel stream 
compaction algorithmic function, using the Windows 7 64-bit operating system and the 
following configuration: Intel i7-2600K clocked at 4.6 GHz, with 8 GB (2x4GB) of 1333 
MHz, DDR3 dual channel. I have used the NVIDIA graphic cards GeForce GTX 280, 
GTX480 and GTX 680. Programming and access to the GPUs used the CUDA toolkit 4.1, 
with the NVIDIA driver version 270.81 (for the GTX 280 and GTX 480) and 300.1 (for 



the GTX 680). In addition, all processes related to the graphical user interface have been 
disabled to reduce the external traffic to the GPU.  

Measurements do not include the necessary time for data transfers between the central 
processing unit and the graphic processing unit, as the stream compaction algorithmic 
function is designed to be used as a building block for a large number of applications 
running on GPUs, so the transfer times will vary depending on the complexity of the 
specific application.  

In order to compute the average execution time that the GPU spends for executing the 
stream compaction algorithmic function, I have used the CUDA application programming 
interface (API). I have preferred this option instead of those based on the CPU’s or on the 
operating system’s timers, because those methods would have included latency and 
variations from different sources. In addition, computations can be asynchronously 
performed on the host while the GPU kernel runs and the only way to measure the 
necessary time for the host computations is to use the CPU or the operating system timing 
mechanism.  

A GPU time stamp recorded at user specified moment in time represents an event in 
CUDA. Because the time stamp is recorded directly by the GPU, I have not encountered 
the problems that could have appeared if I had tried to time the GPU execution using CPU 
timers. In order to time correctly the function’s execution, I have created both a start and a 
stop event. Some of the kernel calls I make in CUDA C are asynchronous, the GPU 
begins to execute the code but the CPU continues the execution of the next code line 
before the GPU has finished. In order to safely read the value of the stop event I instruct 
the CPU to synchronize on the event using the API function “cudaEventSynchronize()”, 
as depicted in Figure 5.  

 
Figure 5. Measuring the execution time using CUDA events  

In this way I have set the runtime to block further instructions until the GPU has reached 
the stop event so when calling the “cudaEventSynchronize()” I am sure that all the GPU 
work prior to the stop event has been completed and it is safe to read the recorded time 
stamp. In this way, I get a reliable measurement of the execution time for computing the 
above described stream compaction algorithmic function [1]. 



 
The first set of tests evaluates the execution times obtained by applying the stream 
compaction algorithmic function on vectors of various sizes and elements of float type. 
The vectors have been randomly generated as to cover a wide range of values. In Table 1 
I present the results of the experimental tests when running the stream compaction 
algorithmic function on the CPU and on the two GPUs mentioned above. The results 
represent the average of 10,000 iterations, and the unit of measure is milliseconds (ms). 

Table 1. Experimental results for the stream compaction algorithmic function 

Test 
No. 

Number 
of 

elements 

Execution 
time on 

CPU (ms) 

Execution time on GPU (ms) 

GTX 280 GTX 480 GTX 680 

1 35 0.000251 0.163672 0.080994 0.069412 
2 128 0.000881 0.165035 0.055889 0.102792 
3 256 0.001751 0.150721 0.05853 0.068543 
4 260 0.001802 0.164149 0.050703 0.069557 
5 512 0.003764 0.167543 0.076934 0.068769 
6 1000 0.00809 0.170796 0.070327 0.083748 
7 1024 0.008283 0.162103 0.063049 0.080717 
8 1030 0.008401 0.335697 0.117377 0.090358 
9 32768 0.306007 0.34606 0.132379 0.144445 
10 45555 0.425129 0.276806 0.138398 0.142196 
11 65536 0.611791 0.389857 0.130423 0.144086 
12 131072 1.231282 0.374864 0.158547 0.147817 
13 262144 2.467049 0.441118 0.179466 0.152783 
14 500111 4.770547 0.552596 0.248678 0.173436 
15 524288 4.925248 0.599289 0.249158 0.166949 
16 1048555 9.976362 0.747874 0.355804 0.217646 
17 1048576 9.933178 0.712332 0.336078 0.218307 
18 1048581 9.930643 0.86948 0.402963 0.238417 
19 2097152 19.905175 1.216657 0.632166 0.336693 
20 2097999 19.964916 1.254584 0.627385 0.329394 
21 4194334 39.781245 1.961108 1.050636 0.561816 
22 8388600 79.936226 3.212200 1.935706 0.947059 

 
In Figure 6 I present the obtained experimental results by running the stream compaction 
algorithmic function when the input array has a relatively low dimension (35-1030 
elements). In this case I have noticed that the central processing unit has the best 
execution time, because it has not been generated an enough computational load in order 
to use the huge parallel processing capacity of the GPUs. In this case, the best result is 
obtained when running the stream compaction algorithmic function on the CPU. 

 



 
Figure 6. The stream compaction algorithmic function: 35-1030 elements of the input array  

 
 I have analyzed the obtained experimental results when running stream 
compaction algorithmic function on a large dimension input array (1030-8388600 
elements) (Figure 7). In this case, I have noticed that the GTX 680 graphic card obtains 
the best execution time, because this time it has been generated a sufficient computational 
load to fully employ the huge parallel processing capacity of the GPU. Even when 
processing an input vector of 8388600, the GTX 680 offers an execution time of under 1 
millisecond (0.947059 ms).  

 
Figure 7. The stream compaction algorithmic function: 1030-8388600 elements  

  



 

 
Figure 8. The influence of data types on the performance of the stream compaction algorithmic 

function 

As the stream compaction algorithmic function has been designed to allow the selection 
of the input array components’ data type, in the next set of tests, I evaluate the influence 
of the data types on its performance. In Figure 8 there are presented the obtained 
experimental results when running the stream compaction algorithmic function on an 
input array of variable dimension (35-8388600 elements) and various type of input data, 
using the GTX 680 graphic processor. The results represent the average of 10,000 
iterations. One can observe that the performance is comparable for all the types of input 
data, the execution time ranging between 0.049303 ms and 0.979995 ms.  

The experimental results confirm the efficiency of the developed optimization solutions 
and the stream compaction algorithmic function’s efficiency, which offers optimum 
results in different situations: when the number of elements of the input vector varies (35-
8,388,600 elements); when the data types varies; on different graphics processors 
architectures. The function provides a high degree of performance in different situations 
and a great applicability potential in a wide range of data processing applications and 
algorithms. 

Conclusions 

In this paper I have researched and developed an efficient implementation of the stream 
compaction algorithmic function in CUDA, using different optimization solutions. I have 
first analyzed and designed the algorithmic function, highlighting the algorithm’s steps. I 
have developed and then applied a series of solutions to improve the performance of the 
stream compaction algorithmic function (Table 2).   

 



Table 2. Solutions for improving the performance of the stream compaction algorithmic function 
in CUDA 

 
I have analyzed the performance of the stream compaction algorithmic function in 
CUDA, using a series of experimental tests and compared it with an alternative approach 
run on the central processing unit. In order to compute the average execution time of the 
graphic processing unit I have used the CUDA application programming interface (API). 
After having analyzed the experimental results obtained by using the solutions for 
optimizing the performance of the stream compaction algorithmic function, I have noticed 
the following: 

• When the stream compaction algorithmic function is run on the GTX 680 
graphics processor and the input vectors have sizes ranging from 32,768 to 
8,388,600 elements, I have recorded improvements of up to 84.40 x in terms of 
execution time (0.947059 ms compared to 79.936226 ms) compared to the stream 
compaction run on the central processing unit i7-2600K. I have progressively 
optimized the solutions in order to benefit from the huge computational power of 
the GPUs. When the input vector’s size ranges from 35 to 1030, the CPU 
provides the best results (the lowest execution time), because there is not a 
sufficient computational load to ensure the full employment of the huge parallel 
capacity of the graphics processors. In order to reach the best performance, one 
must process low dimension input vectors using the CPU and large dimension 
input vectors using the GPU.  

• When running the stream compaction algorithmic function on an input array of 
variable dimension (35-8388600 elements) and various type of input data, using 
the GTX 680 graphic processor, one can observe that the performance is 
comparable for all the types of input data, the execution time ranging between 
0.049303 ms and 0.979995 ms. These results confirm the efficiency of the 
optimization solutions used for developing the stream compaction algorithmic 
function, providing a high level of performance regardless of the processed data 
types.  

One particular interest of this paper was to research how the optimization techniques scale 
to the latest generation of general-purpose graphic processing units, like the GTX 280, the 

No. The solution for improving the performance of the  stream 
compaction algorithmic function in CUDA 

Solution 1 Calling the optimized parallel prefix sum function developed in CUDA 
Solution 2 Optimizing the management of resources used in the processing tasks 
Solution 3 Maximizing the concurrent execution of tasks 
Solution 4 Managing shared memory bank conflicts 
Solution 5 Reducing the number of synchronization operations between parallel tasks 
Solution 6 Minimizing the number of used registers 
Solution 7 Optimizing the memory bandwidth 
Solution 8 Minimizing data transfers between the host and the device 
Solution 9 Reducing the number of executed instructions  



 
GTX 480 and the GTX 680. The study demonstrates that the GTX 680, the latest CUDA-
enabled GPU from the Kepler architecture is capable of efficient and accurate stream 
compaction processing. Analyzing the literature, I have noticed that none of the works so 
far (to my best knowledge) has studied how well the optimization solutions for the stream 
compaction algorithmic function scale to the main CUDA architectures, especially 
Kepler, the latest generation of GPU architectures. One important aspect to take into 
account is that the GTX 680 is a consumer-oriented graphic card and is not designed 
specifically for high performance scientifically computations, like the Quadro series. I 
have preferred the GTX 680 solution due to its reduced cost and wide accessibility.  

The most important aim when designing and developing the optimization of the stream 
compaction algorithmic function was to obtain a CUDA processing solution that is self-
adjustable and self-configurable (regarding the number of thread blocks, number of 
threads per block, number of elements processed per thread, etc.) depending on the GPU’s 
architecture. The developed solution offers a high degree of performance over an entire 
range of CUDA enabled GPUs: the Tesla GT200 architecture, launched on 16 Jun 2008; 
the Fermi GF100 architecture, launched on 26 March 2010 and the Kepler GK104 
architecture, released on 22 March 2012. 

The solutions for optimizing the stream compaction algorithmic function in CUDA have a 
high degree of applicability, confirmed by the high performance achieved on various 
GPUs architectures from different generations. The high performance that has been 
recorded in a variety of scenarios confirms the applicability and usefulness of the 
analyzed stream compaction algorithmic function. The Compute Unified Device 
Architecture offers viable solutions for developing efficient parallel software that runs on 
multithread processing cores architectures. Analyzing the obtained experimental results, 
the CUDA parallel programming model proves to be a very useful tool for designing 
scalable parallel applications and for developing solutions that optimize data processing.  
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