

SOLUTIONS FOR OPTIMIZING THE STREAM COMPACTION

ALGORITHMIC FUNCTION USING THE COMPUTE UNIFIED DEVICE
ARCHITECTURE

Alexandru Pîrjan1

Abstract

In this paper, I have researched and developed solutions for optimizing the stream
compaction algorithmic function using the Compute Unified Device Architecture
(CUDA). The stream compaction is a common parallel primitive, an essential building
block for many data processing algorithms, whose optimization improves the performance
of a wide class of parallel algorithms useful in data processing. A particular interest in
this research was to develop solutions for optimizing the stream compaction algorithmic
function that offers optimal solutions over an entire range of CUDA enabled GPUs: Tesla
GT200, Fermi GF100 and the latest Kepler GK104 architecture, released on 22 March
2012. In order to confirm the utility of the developed optimization solutions, I have
extensively benchmarked and evaluated the performance of the stream compaction
algorithmic function in CUDA.

Keywords: parallel processing, CUDA, Kepler, threads, stream compaction.

 Introduction

For a long time, graphics processing units (GPU) have been used solely as graphic
accelerators, for graphic rendering specific functions. The increased necessity for
improved high resolution three-dimensional rendering and a large number of frames per
second have led to the GPUs’ evolvement. By the end of the 1990s, these units have
become programmable at a hardware level and in 2006, by unifying both software and
hardware components, the NVIDIA company has released the Compute Unified Device
Architecture (CUDA), a new parallel programming model based on the GPU’s
computational processing power for solving complex processing tasks more efficiently
than using central processing units (CPUs) [1]. This development has made it possible to
accelerate a broad class of data processing applications. In this context, the improvement
of the data extraction and parallel processing can be achieved using high-performance
basic functional blocks (and among them, the stream compaction algorithmic function),
designed to offer optimum performance and efficiency, based on graphics processing
units with multiple processing cores.

With the introduction of CUDA-C language, application developers are able to harness,
using a standard programming language, the huge parallel processing power offered by
the latest generation of graphics processing units. CUDA enables developers to specify
how tasks are decomposed in order to be processed by many parallel threads and how are
these tasks executed by the GPU [2]. The high level of control offered by the CUDA-C

1 Ph D Candidate, Faculty of Computer Science for Business Management, Romanian-American University,
1B, Expozitiei Blvd., district 1, code 012101, Bucharest, Romania, e-mail: alex@pirjan.com

language facilitates the development of high-performance basic functions useful for
optimizing a wide range of computational tasks that require high processing power.

The CUDA processing instructions flow consists of 4 stages (Figure 1):
1. In Stage 1, data is copied from the system’s memory into the graphics processing

unit’s memory.
2. In Stage 2, the graphics processing unit receives the processing request

instruction.
3. In Stage 3, every processing core of the GPU parallel processes its data and stores

the result in the GPU’s memory.
4. In Stage 4, the results are copied back from the GPU memory to the system

memory

Figure 1. The CUDA processing instructions flow

The latest three CUDA-enabled graphic cards are GTX 280, GTX 480 and GTX 680. The
GTX 280 from the Tesla GT200 architecture, launched on 16 Jun 2008, is based on 65 nm
fabrication technology, has 1.4 billion of transistors, 240 CUDA cores and 30 streaming
multiprocessors. The graphics clock runs at 602 MHz, the processor clock at 1296 MHz,
it comes with 1024 MB of memory in the standard configuration, having an effective
clock of 1107 MHz, a 512-bit gDDR3 memory interface width and 141.7 GB/sec memory
bandwidth. It has a texture fill rate of 48.2 billion/sec, 80 texture units, 32 ROP units and
the maximum board power (TDP) of 236 Watts.

The GTX 480 from the Fermi GF100 architecture, launched on 26 March 2010, is based
on 40 nm fabrication technology, has 3.2 billion of transistors, 480 CUDA cores and 15
streaming multiprocessors. The graphics clock runs at 700 MHz, the processor clock at

1401 MHz, it comes with 1536 MB of memory in the standard configuration, having an
effective clock of 3700 MHz, a 384-bit gDDR5 memory interface width and 177.4
GB/sec memory bandwidth. It has a texture fill rate of 42 billion/sec, 60 texture units, 48
ROP units and the maximum board power (TDP) of 250 Watts.

The newest CUDA graphic card, the GTX 680 from the Kepler GK104 architecture,
released on 22 March 2012, is based on 28 nm fabrication technology, has 3.54 billion of
transistors, 1536 CUDA cores and 8 streaming multiprocessors. The graphics clock runs
at 1006 MHz, the boost clock at 1058 MHz, it comes with 2048 MB of memory in the
standard configuration, having an effective clock of 6000 MHz, a 256-bit gDDR5
memory interface width and 192.2 GB/sec memory bandwidth. It has a texture fill rate of
128.8 billion/sec, 128 texture units, 32 ROP units and the maximum board power (TDP)
of 170 Watts. The GK104 poses significant differences regarding the streaming
multiprocessors, that are now called SMX units and incorporates several important
architectural changes in order to deliver an improved performance and power efficiency.

In the following, I depict the stream compaction function, an overview regarding different
approaches in designing it and an efficient algorithmic method for developing and
implementing the stream compaction algorithmic function in the CUDA architecture.

 The Stream Compaction Function

The stream compaction (stream reduction) is an important algorithmic function, a
primitive building block, useful in many algorithms that benefit from the massive
parallelism. Highly parallel algorithms often produce sparse data or data containing
unwanted elements, especially in the situations when each input element produces a
varying number of output elements. In order to maintain the overall performance, it is
often necessary to compact the data before reaching the next processing steps. Using the
stream compaction, it is obtained a compacted stream that provides a balanced
computational load for all the processors.

Using the huge computational power provided by the CUDA parallel architecture, the
stream compaction algorithmic function’s optimization is a solution to improve the
performance of all data processing algorithms that require stream compaction. Therefore,
the stream compaction function can improve the performance of a wide class of parallel
algorithms useful in data processing [3].

In the following, I describe some situations in which the stream compaction is
successfully applied. In the parallel breadth first tree traversal, after each traversal step,
invalid nodes must be pruned from the list of open nodes because, otherwise, an
exponential increase of the nodes number would take place [4]. Similar problems are
encountered in other situations, for example those related to image processing techniques
that simulate light interaction with various surfaces [5] or GPU-based collision detection
issues [6].

The easiest implementation of the stream compaction is through a sequential algorithm,
running on a uniprocessor machine: valid elements are moved from the input vector to the

output one. On parallel architectures, the implementation of an efficient stream
compaction is more difficult because for each input element of the stream, the output
position critically depends on the previous state of the element, before applying the
compaction. Although it seems to be the most appropriate, the implementation that
synchronizes after each element has been processed is very inefficient.

In the literature, there are various approaches to overcome this problem, most of them
being based on performing a parallel prefix sum [7], [8]. The parallel prefix sum is
applied on a stream containing a "0" for each invalid element and a "1" for each valid
element of the input vector. As a result of this operation, it is obtained a stream containing
for each element, the number of valid elements preceding it. This information is useful for
moving each valid element in the new location.

In 2005, this approach was implemented on a GPU [9]. In that moment, the graphics
processing units did not provide random write access to memory and a binary search was
used in order to find the input element corresponding to each output. In this case, the
prefix sum has the 𝑂(𝑛) time complexity, the binary searches has the 𝑂(𝑙𝑜𝑔 𝑛)
complexity, while the overall complexity is 𝑂(𝑛 ∙ 𝑙𝑜𝑔 𝑛).

A similar approach was used later in [10]. In this case, the prefix sum has been improved
by using a more efficient implementation, the binary search step remained unchanged and
the total time complexity remained 𝑂(𝑛 ∙ 𝑙𝑜𝑔 𝑛). Another approach [6], [11] uses a tree
containing the valid elements. The binary search step is performed by searching into the
tree for the correct input element corresponding to each output. The time complexity
remains the same as in the previous cases, 𝑂(𝑛 ∙ 𝑙𝑜𝑔 𝑛).

In order to improve the time complexity, the algorithm has been applied to smaller data
fragments of fixed size [12]. The 𝑘-size fragments are compacted, using the previous
algorithms, using 𝑂(𝑘 ∙ 𝑙𝑜𝑔𝑘) steps. Then, the compacted fragments are concatenated
using the GPU. This version of the algorithm provides a 𝑂(𝑛) time complexity.

Nowadays, the graphics processing units incorporate specific hardware that facilitates the
efficient implementation of stream compaction. In the literature there are a few results
regarding this aspect, but the obtained performance is disappointing [12]. The modern
graphics processing units also provide random write access to memory, which can be used
to replace the binary search phase. This implementation has the time complexity 𝑂(𝑛) [9],
[10].

The stream compaction is closely related to data sorting. A fast sorting technique that uses
an efficient compaction algorithm is depicted in [13]. The stream compaction is useful in
a variety of general purpose applications, including collision detection and sparse matrix
compression, is the main method for transforming heterogeneous vectors, with elements
of several types, in homogeneous vectors, with elements of the same type. This feature is
particularly useful for those vectors in which only some elements are of interest for the
analyzed problem. The stream compaction produces a smaller vector, containing only the
elements of interest, that is being processed more efficiently and thus, the transfer times,
particularly between the GPU and the CPU, are significantly reduced.

The stream compaction is a filtering operation: a subset of elements are selected from an
input vector and used to build an output array of smaller dimension, containing only the
elements of interest for the studied problem. Formally, the stream compaction starts with
an input vector 𝑣 = (𝑣1, 𝑣2, … , 𝑣𝑛) and a predicate 𝑝. The output vector contains only
those elements of 𝑣 for which 𝑝(𝑣𝑖) is true, keeping the order of the input elements [9]
(Figure 2).

Figure 2. An example for the stream compaction algorithmic function

As it was mentioned above, the graphics processing units on which Horn implemented the
stream compaction in 2005 did not provide random write access to memory, so Horn has
replaced this write operation with a sequence of binary search steps [9]. The compaction
of 𝑛 elements was achieved by applying 𝑙𝑜𝑔 𝑛 binary search steps, but this technique
required a large amount of resources. The native support for random write access in
memory implemented in modern graphics processing units facilitates the design of stream
compaction algorithms that are considerably more efficient.

 Designing An Efficient Stream Compaction Algorithmic Function In Cuda

In the following, I present an efficient method for designing and implementing the stream
compaction algorithmic function in the CUDA architecture. The stream compaction
algorithmic function that I have developed is useful for architectures based on multiple
processing cores, as SIMD (Single Instruction, Multiple Data). In this case, the multiple
data streams and the single instruction stream facilitate the parallel processing of data.
The processing units are acting on different data elements, executing the same instruction.
These systems are useful in specialized graphics problems and in sound processing. When
designing the stream compaction algorithmic function, I have considered a number of
technical issues for optimizing the performance: maximizing concurrent execution,
minimizing synchronizations, reducing the bandwidth and memory requirements. In the
following, 𝑣 = (𝑣1, 𝑣2, … , 𝑣𝑛) represents the input vector, 𝑝 is a predicate, used to select
the elements of interest from the input vector.

I have developed the stream compaction algorithmic function in three steps:

Step 1. First, it is generated a temporary array containing:
• a 1 for those elements of the input vector for which 𝑝(𝑣𝑖) is true;
• a 0 for those elements of the input vector for which 𝑝(𝑣𝑖) is false.

Step 2. The parallel prefix sum algorithmic function [14] is applied to the vector
obtained in Step 1. The result of this operation is a vector containing, for
each element, the number of elements from the input vector prior to that

item, for which 𝑝(𝑣𝑖) is true. Thus, each element of this new vector offers
information about its position in the output vector.

Step 3. The information obtained in Step 2 is then used to move each valid
element in its new location, benefiting from the random write access to
memory available in the latest generation of CUDA graphics processing
units (Figure 3).

Figure 3. An example of applying the algorithmic steps of the stream compaction algorithmic

function

In order to optimally process the stream compaction, I designed and developed the basic
stream compaction algorithmic function as to first compute the thread block’s size, the
number of blocks and the maximum number of threads per block, depending on the total
number of elements that have to be processed. These parameters are needed to fully
exploit the huge computational power of the GPU, obtaining thus a more efficient data
compaction process.

The function has been designed to allow the selection of the input array components, from
one of the data types: integer, unsigned integer, float, double, long long or unsigned long
long. The function also offers the possibility to set in advance the parameters of a
configuration structure that are then passed as parameters to the BFABCompact function
(Figure 4).

As in the Step 2 of the stream compaction algorithmic function, the parallel prefix sum
algorithmic function is applied to the vector obtained in the Step 1, the overall
performance of the stream compaction algorithmic function is significantly influenced by
the performance of the parallel prefix sum algorithmic function.

Figure 4. Computing the parameters and calling the stream compaction algorithmic function in
CUDA

In the following section, I will outline several solutions for optimizing the performance of
the stream compaction algorithmic function in CUDA, solutions that I have used for
developing this function.

 Solutions For Optimizing The Performance Of The Stream Compaction
Algorithmic Function In Cuda

By consulting the scientific literature and using a thorough analysis of the current state of
knowledge, I have identified and developed a series of solutions for optimizing the
performance of the stream compaction algorithmic function in CUDA:

Solution 1 - calling the optimized parallel prefix sum function developed in CUDA. In the
Step 2 of the stream compaction algorithmic function, I have used the optimized parallel
prefix sum algorithmic function developed in CUDA [14]. This is the most important
optimization technique applied in designing the stream compaction function and therefore
a performance improvement of up to 45% was obtained compared to the case when
running in this step a sequential algorithm, on the central processing unit.

Solution 2 – optimizing the management of resources used in the processing tasks.
Another important solution that I have addressed in the development and design of the
stream compaction algorithmic function, in order to optimize data processing, consists in
the optimal management of resources used for the processing tasks. For improving the
software performance in CUDA, when threads are being defined, one must take into
account the high latency of global memory. While the CPU architecture uses large caches
to hide memory latencies, CUDA generates and uses thousands of active threads [15].
First, I have computed the thread block’s size, the number of blocks and the maximum
number of threads per block, depending on the total number of elements that have to be

processed. Therefore, I have obtained an optimal allocation of resources according to the
tasks that must be processed, benefiting from the huge computational power provided by
the GPU, improving the efficiency of the entire stream compaction process, which results
in a substantial improvement in runtime compared to sequential implementations that are
run on central processing units.

Solution 3 - maximizing the concurrent execution of tasks. The graphics processing units
execute and manage hundreds of concurrent threads, avoiding computational overloading
and reducing the memory latency, as they provide 240 CUDA processing cores in the case
of the GTX 280 graphic card, 480 CUDA processing cores for the GTX 480 graphic card
and 1,536 CUDA processing cores for the GTX 680 graphic card. Thus, taking into
account that each thread can independently process a part of the source code (as it has its
own private memory, private registers and program counter) and that there are required
hundreds of execution threads in order to fully employ the processing cores, I have
optimized the tasks assigned to each available thread using thousands of active threads
offered by the CUDA architecture for improving the software performance of the stream
compaction function. Taking into account that processing a single element per thread does
not generate an enough computational load for reducing the memory latency, I have
allocated eight input elements to each thread. This happens when data is loaded from
global to shared memory. Each execution thread reads two groups of four elements and
then sequentially processes them.

Solution 4 – managing shared memory bank conflicts. An important issue that I took into
account when designing the stream compaction algorithmic function refers to managing
shared memory bank conflicts. The stream compaction algorithmic function calls, during
its execution, the optimized parallel prefix sum function developed in CUDA [14] and
frequently uses the CUDA shared memory, composed of multiple memory banks
(memory modules of equal size) [1]. Multiple data requests from the same memory bank
generate shared memory banks conflicts. When a conflict occurs, the hardware device
serializes memory operations and this makes all the threads wait until all memory requests
have been fulfilled. This process consumes significant time resources. For solving this
situation, I have designed the stream compaction algorithmic function as to use “warps”
(groups of 32 threads) serialization markers, in order to divide the data blocks in more
fragments that are being processed independently, using one warp for each fragment. I
have preferred this technique because it helps avoiding shared memory bank conflicts and
reduces the necessity of synchronization, as the synchronization is not required for
sharing data within the same warp, unlike the case when the shared data belongs to
different warps. The instructions are executed in SIMD mode (Single Instruction,
Multiple Data).

Solution 5 – reducing the number of synchronization operations between parallel tasks.
The parallel task synchronization represents real time coordination and is often associated
with inter thread communication. Synchronization is usually implemented by setting a
synchronization point in the application from which a task cannot continue until another
task reaches a certain point. In the Step 2 of the stream compaction algorithmic function, I
have used the parallel prefix sum function developed in CUDA [14]. As I have used the
parallel prefix sum function within a warp when designing this function, I have eliminated

the necessity of synchronization points, because inter threads communication occurs at
the warp level, so I do not have to synchronize in order to share data within the same
warp. Each of the warps’ last elements is stored in the shared memory and finally a single
warp sums the previously stored results.

Solution 6 – minimizing the number of used registers. The CUDA graphic processing
units use multiple threads (multithreading) to reduce the memory latency. The number of
executing threads that can be simultaneously used is often limited by their registry
requirements. I have minimized the number of used registers, thus maximizing the
available number of threads.

Solution 7 – optimizing the memory bandwidth. To design an efficient stream compaction
algorithmic functions, I have first divided the input data into smaller fragments allocated
to the thread blocks. Therefore, I have reduced the number of global memory calls and of
the execution time, by optimally allocating thread blocks and using the GPU’s shared
memory instead of the global one.

Solution 8 - minimizing data transfers between the host and the device. Given that data
transfers between the host and the device consume considerable computational resources,
I have designed the stream compaction algorithmic function so that data transfers between
the host and the device are minimal. I have reduced these transfers at the beginning, when
data is being copied from host to the device memory and, in the end, when the compacted
vector is copied back into the host memory.

Solution 9 - reducing the number of executed instructions. The stream compaction
algorithmic function that I have developed is useful for multicore architectures such as
SIMD (Single Instruction, Multiple Data), in which case instructions are synchronous
within each warp. I have noticed that, as the stream compaction process progresses, the
number of active threads decreases, and when the number of threads is less than or equal
to 32, it means that only the last warp remained to be executed. Within this warp, there is
no need to synchronize the threads. Therefore, I have decided to remove these instructions
and thus I have obtained an improvement in the overall performance.

In the following I present a benchmark suite that I have developed in order to emphasize
the performance of the stream compaction algorithmic function in CUDA, optimized
using the above presented Solutions 1-9.

 The Experimental Results And The Performance Analysis Of The Stream
Compaction Algorithmic Function In Cuda

In this section I analyze the performance of the above described parallel stream
compaction algorithmic function, using the Windows 7 64-bit operating system and the
following configuration: Intel i7-2600K clocked at 4.6 GHz, with 8 GB (2x4GB) of 1333
MHz, DDR3 dual channel. I have used the NVIDIA graphic cards GeForce GTX 280,
GTX480 and GTX 680. Programming and access to the GPUs used the CUDA toolkit 4.1,
with the NVIDIA driver version 270.81 (for the GTX 280 and GTX 480) and 300.1 (for

the GTX 680). In addition, all processes related to the graphical user interface have been
disabled to reduce the external traffic to the GPU.

Measurements do not include the necessary time for data transfers between the central
processing unit and the graphic processing unit, as the stream compaction algorithmic
function is designed to be used as a building block for a large number of applications
running on GPUs, so the transfer times will vary depending on the complexity of the
specific application.

In order to compute the average execution time that the GPU spends for executing the
stream compaction algorithmic function, I have used the CUDA application programming
interface (API). I have preferred this option instead of those based on the CPU’s or on the
operating system’s timers, because those methods would have included latency and
variations from different sources. In addition, computations can be asynchronously
performed on the host while the GPU kernel runs and the only way to measure the
necessary time for the host computations is to use the CPU or the operating system timing
mechanism.

A GPU time stamp recorded at user specified moment in time represents an event in
CUDA. Because the time stamp is recorded directly by the GPU, I have not encountered
the problems that could have appeared if I had tried to time the GPU execution using CPU
timers. In order to time correctly the function’s execution, I have created both a start and a
stop event. Some of the kernel calls I make in CUDA C are asynchronous, the GPU
begins to execute the code but the CPU continues the execution of the next code line
before the GPU has finished. In order to safely read the value of the stop event I instruct
the CPU to synchronize on the event using the API function “cudaEventSynchronize()”,
as depicted in Figure 5.

Figure 5. Measuring the execution time using CUDA events

In this way I have set the runtime to block further instructions until the GPU has reached
the stop event so when calling the “cudaEventSynchronize()” I am sure that all the GPU
work prior to the stop event has been completed and it is safe to read the recorded time
stamp. In this way, I get a reliable measurement of the execution time for computing the
above described stream compaction algorithmic function [1].

The first set of tests evaluates the execution times obtained by applying the stream
compaction algorithmic function on vectors of various sizes and elements of float type.
The vectors have been randomly generated as to cover a wide range of values. In Table 1
I present the results of the experimental tests when running the stream compaction
algorithmic function on the CPU and on the two GPUs mentioned above. The results
represent the average of 10,000 iterations, and the unit of measure is milliseconds (ms).

Table 1. Experimental results for the stream compaction algorithmic function

Test
No.

Number
of

elements

Execution
time on

CPU (ms)

Execution time on GPU (ms)

GTX 280 GTX 480 GTX 680

1 35 0.000251 0.163672 0.080994 0.069412
2 128 0.000881 0.165035 0.055889 0.102792
3 256 0.001751 0.150721 0.05853 0.068543
4 260 0.001802 0.164149 0.050703 0.069557
5 512 0.003764 0.167543 0.076934 0.068769
6 1000 0.00809 0.170796 0.070327 0.083748
7 1024 0.008283 0.162103 0.063049 0.080717
8 1030 0.008401 0.335697 0.117377 0.090358
9 32768 0.306007 0.34606 0.132379 0.144445
10 45555 0.425129 0.276806 0.138398 0.142196
11 65536 0.611791 0.389857 0.130423 0.144086
12 131072 1.231282 0.374864 0.158547 0.147817
13 262144 2.467049 0.441118 0.179466 0.152783
14 500111 4.770547 0.552596 0.248678 0.173436
15 524288 4.925248 0.599289 0.249158 0.166949
16 1048555 9.976362 0.747874 0.355804 0.217646
17 1048576 9.933178 0.712332 0.336078 0.218307
18 1048581 9.930643 0.86948 0.402963 0.238417
19 2097152 19.905175 1.216657 0.632166 0.336693
20 2097999 19.964916 1.254584 0.627385 0.329394
21 4194334 39.781245 1.961108 1.050636 0.561816
22 8388600 79.936226 3.212200 1.935706 0.947059

In Figure 6 I present the obtained experimental results by running the stream compaction
algorithmic function when the input array has a relatively low dimension (35-1030
elements). In this case I have noticed that the central processing unit has the best
execution time, because it has not been generated an enough computational load in order
to use the huge parallel processing capacity of the GPUs. In this case, the best result is
obtained when running the stream compaction algorithmic function on the CPU.

Figure 6. The stream compaction algorithmic function: 35-1030 elements of the input array

 I have analyzed the obtained experimental results when running stream
compaction algorithmic function on a large dimension input array (1030-8388600
elements) (Figure 7). In this case, I have noticed that the GTX 680 graphic card obtains
the best execution time, because this time it has been generated a sufficient computational
load to fully employ the huge parallel processing capacity of the GPU. Even when
processing an input vector of 8388600, the GTX 680 offers an execution time of under 1
millisecond (0.947059 ms).

Figure 7. The stream compaction algorithmic function: 1030-8388600 elements

Figure 8. The influence of data types on the performance of the stream compaction algorithmic

function

As the stream compaction algorithmic function has been designed to allow the selection
of the input array components’ data type, in the next set of tests, I evaluate the influence
of the data types on its performance. In Figure 8 there are presented the obtained
experimental results when running the stream compaction algorithmic function on an
input array of variable dimension (35-8388600 elements) and various type of input data,
using the GTX 680 graphic processor. The results represent the average of 10,000
iterations. One can observe that the performance is comparable for all the types of input
data, the execution time ranging between 0.049303 ms and 0.979995 ms.

The experimental results confirm the efficiency of the developed optimization solutions
and the stream compaction algorithmic function’s efficiency, which offers optimum
results in different situations: when the number of elements of the input vector varies (35-
8,388,600 elements); when the data types varies; on different graphics processors
architectures. The function provides a high degree of performance in different situations
and a great applicability potential in a wide range of data processing applications and
algorithms.

Conclusions

In this paper I have researched and developed an efficient implementation of the stream
compaction algorithmic function in CUDA, using different optimization solutions. I have
first analyzed and designed the algorithmic function, highlighting the algorithm’s steps. I
have developed and then applied a series of solutions to improve the performance of the
stream compaction algorithmic function (Table 2).

Table 2. Solutions for improving the performance of the stream compaction algorithmic function
in CUDA

I have analyzed the performance of the stream compaction algorithmic function in
CUDA, using a series of experimental tests and compared it with an alternative approach
run on the central processing unit. In order to compute the average execution time of the
graphic processing unit I have used the CUDA application programming interface (API).
After having analyzed the experimental results obtained by using the solutions for
optimizing the performance of the stream compaction algorithmic function, I have noticed
the following:

• When the stream compaction algorithmic function is run on the GTX 680
graphics processor and the input vectors have sizes ranging from 32,768 to
8,388,600 elements, I have recorded improvements of up to 84.40 x in terms of
execution time (0.947059 ms compared to 79.936226 ms) compared to the stream
compaction run on the central processing unit i7-2600K. I have progressively
optimized the solutions in order to benefit from the huge computational power of
the GPUs. When the input vector’s size ranges from 35 to 1030, the CPU
provides the best results (the lowest execution time), because there is not a
sufficient computational load to ensure the full employment of the huge parallel
capacity of the graphics processors. In order to reach the best performance, one
must process low dimension input vectors using the CPU and large dimension
input vectors using the GPU.

• When running the stream compaction algorithmic function on an input array of
variable dimension (35-8388600 elements) and various type of input data, using
the GTX 680 graphic processor, one can observe that the performance is
comparable for all the types of input data, the execution time ranging between
0.049303 ms and 0.979995 ms. These results confirm the efficiency of the
optimization solutions used for developing the stream compaction algorithmic
function, providing a high level of performance regardless of the processed data
types.

One particular interest of this paper was to research how the optimization techniques scale
to the latest generation of general-purpose graphic processing units, like the GTX 280, the

No. The solution for improving the performance of the stream
compaction algorithmic function in CUDA

Solution 1 Calling the optimized parallel prefix sum function developed in CUDA
Solution 2 Optimizing the management of resources used in the processing tasks
Solution 3 Maximizing the concurrent execution of tasks
Solution 4 Managing shared memory bank conflicts
Solution 5 Reducing the number of synchronization operations between parallel tasks
Solution 6 Minimizing the number of used registers
Solution 7 Optimizing the memory bandwidth
Solution 8 Minimizing data transfers between the host and the device
Solution 9 Reducing the number of executed instructions

GTX 480 and the GTX 680. The study demonstrates that the GTX 680, the latest CUDA-
enabled GPU from the Kepler architecture is capable of efficient and accurate stream
compaction processing. Analyzing the literature, I have noticed that none of the works so
far (to my best knowledge) has studied how well the optimization solutions for the stream
compaction algorithmic function scale to the main CUDA architectures, especially
Kepler, the latest generation of GPU architectures. One important aspect to take into
account is that the GTX 680 is a consumer-oriented graphic card and is not designed
specifically for high performance scientifically computations, like the Quadro series. I
have preferred the GTX 680 solution due to its reduced cost and wide accessibility.

The most important aim when designing and developing the optimization of the stream
compaction algorithmic function was to obtain a CUDA processing solution that is self-
adjustable and self-configurable (regarding the number of thread blocks, number of
threads per block, number of elements processed per thread, etc.) depending on the GPU’s
architecture. The developed solution offers a high degree of performance over an entire
range of CUDA enabled GPUs: the Tesla GT200 architecture, launched on 16 Jun 2008;
the Fermi GF100 architecture, launched on 26 March 2010 and the Kepler GK104
architecture, released on 22 March 2012.

The solutions for optimizing the stream compaction algorithmic function in CUDA have a
high degree of applicability, confirmed by the high performance achieved on various
GPUs architectures from different generations. The high performance that has been
recorded in a variety of scenarios confirms the applicability and usefulness of the
analyzed stream compaction algorithmic function. The Compute Unified Device
Architecture offers viable solutions for developing efficient parallel software that runs on
multithread processing cores architectures. Analyzing the obtained experimental results,
the CUDA parallel programming model proves to be a very useful tool for designing
scalable parallel applications and for developing solutions that optimize data processing.

References

1. Sanders J., Kandrot E., CUDA by Example: An Introduction to General-Purpose GPU
Programming, Addison-Wesley Professional, New Jersey, 2010.

2. GPU Computing Gems Jade Edition, Wen-mei W. Hwu, Morgan Kaufmann, 2011.
3. Billeter M., Olsson O., Assarsson U., Efficient Stream Compaction on Wide SIMD Many-

Core Architectures, Proceedings of the Conference on High Performance Graphics, pp.
159-166, August, 2009.

4. Lauterbach C., Garland M., Sengupta S., Luebke D., Manocha D., Fast BVH construction
on GPUs, in Proceedings of the Eurographics Symposium on Rendering, Eurographics
and ACM/SIGGRAPH, Mar. 2009.

5. Wald I., Gribble C. P., Boulos S., Kensler A., SIMD Ray Stream Tracing - SIMD Ray
Traversal with Generalized Ray Packets and On-the-fly Re-Ordering, Sci Institute Tech.
Rep. UUSCI-2007-012, 2007.

6. Gress A., Guthe M., Klein R., GPU-based Collision Detection for Deformable
Parameterized Surfaces, Computer Graphics Forum 25, 3, pg 497–506, John Wiley and
Sons, Sept. 2006.

7. Blelloch G. E., Prefix Sums and Their Applications, in Synthesis of Parallel Algorithms,
Morgan Kaufmann, San Francisco, 2009

8. Chatterjee S., Blelloch G. E., Zagha M., Scan primitives for vector computers. in Proc. of
the 1990 Annual International Conference on Supercomputing, pages 666-675, 1990.

9. Horn D., Stream reduction operations for GPGPU applications, in GPU Gems 2, chapter
36, pg. 573-589, Addison Wesley, Mar. 2005.

10. Sengupta S., Lefohn A. E., Owens J. D., A work-effcient step-efficient prefix sum
algorithm, in Proceedings of the Workshop on Edge Computing Using New Commodity
Architectures, pg. D-26-27, Chapel Hill, May 2006.

11. Ziegler G., Tevs A., Theobalt C., Seidel H.-P., GPU Point List Generation through
Histogram Pyramids, Technical Reports of the MPI for Informatics, MPI-I-2006-4-002,
June 2006.

12. Roger D., Assarsson U., Holzschuch N., Efficient Stream Reduction on the GPU, in
Workshop on General Purpose Processing on Graphics Processing Units, Eds. D. Kaeli
and M. Leeser, 2007.

13. Satish N., Harris M., Garland M., Designing efficient sorting algorithms for manycore
GPUs, Proceedings of the 23rd IEEE International Parallel and Distributed Processing
Symposium, Rome, pp. 1-10, IEEE Publisher, Washington, 23-29 may 2009.

14. Lungu I., Pîrjan A., Petroşanu D., Solutions For Optimizing The Data Parallel Prefix Sum
Algorithm Using The Compute Unified Device Architecture, Journal of Information
Systems & Operations Management, Vol. 5, No. 2.1, pg. 465-477, December 2011.

15. Pirjan A., Improving software performance in the Compute Unified Device Architecture,
Informatica Economica Journal, vol. 14, pp. 30-47, no. 4/December 2010.

	Abstract
	Introduction
	The Stream Compaction Function
	Designing An Efficient Stream Compaction Algorithmic Function In Cuda
	Solutions For Optimizing The Performance Of The Stream Compaction Algorithmic Function In Cuda
	The Experimental Results And The Performance Analysis Of The Stream Compaction Algorithmic Function In Cuda
	Conclusions
	References

