

DYNAMIC DEVELOPMENT AND ASSEMBLY OF LEARNING OBJECTS IN A

MATH LEARNING ENVIRONMENT

Stănică Justina Lavinia 1
Crișan Daniela Alexandra2

Abstract:

The current research intended to define and implement a learning object framework,
which has been applied in the development of an integrated learning environment for the
mathematics field of study. This approach presents many advantages, since it guarantees,
through components combination, the functional characteristics of a learning software,
by enabling the teacher to control the lesson configuration and to adapt it to the
classroom level, and by adjusting the instruction to the many possible approaches and
multiple solutions to the problems.

Keywords: e-Learning, learning object, learning environment, learning architecture

1. Introduction

In the past decade, education theorists have described the way technology has changed
and keeps changing education. No doubt, the technological development continues to
provide new opportunities for training and offers viable alternatives for the traditional
teaching / learning process.

However, qualitative e-Learning resources are still expensive to produce and training
efficiency and investments refund are generally limited by several factors. A problem
would be that the educational resources created within a learning platform usually cannot
be transferred to be used in other training applications. From another point of view,
teachers often want to reuse or modify the learning materials to suit the needs of their
students, but most educational software do not allow this.

Trying to overcome these drawbacks, the recent researches have anticipated the way
reusable learning objects will reduce the costs of e-Learning, while increasing its quality
and accessibility. Learning objects are seen as the technology of the future for designing,
developing and delivering the next generation of training software, due to the adaptability,
reusability and scalability potential they provide.

Given the advantages pointed above, the present paper intended to find a methodology for
applying this technology, and to design a flexible framework for assembling and reusing
learning objects. The practical aspects of our research have resulted in implementing this
technology in an educational platform, in order to increase its quality, reusability, and
productivity. Therefore, an innovative software solution for authoring and learning

1 Lecturer, PhD., Romanian-American University, Bucharest, email: fercalalavinia@yahoo.com
2 Lecturer, PhD., Romanian-American University, Bucharest, email: dacrisan@yahoo.com

mathematics has been developed, which allows teachers to create and customize their own
lessons by easily configuring and combining instructional components.

2. Learning Objects Technology

Even since 1999, the concept of learning objects has been widely used within the e-
Learning communities. However, the terms learning object and reusable learning object
are often used excessively, thereby reducing them to formal expressions. The lack of
conceptual clarity is obvious in a multitude of definitions and uses of these terms.

This technology aims to facilitate the interchange of learning resources between
courses, curricula, teachers, or even institutions. The main idea is that teachers should
reuse the existing educational materials, instead of creating new ones every time they
develop a course.

The problems concerning learning objects and correlated technologies begin with their
own definition. From an operational point of view, these are small instructional pieces,
used in an e-Learning system – which are created, stored, labeled, assembled or referred
[KNOL03]. In a more practical approach, they can be considered as fragments or parts of
a course that can vary in size and complexity from a simple chart to the whole course.

Although there are differences of opinion that mark the defining of learning objects
[ALLE10], the practical implementation of this technology requires that the objects
should have some common characteristics. Therefore, they must be:

• self-contained – an object must describe a single concept, so that if it was used in
another context, it should remain perfectly intelligible and functional;

• independent – a learning unit should have minimal links to other resources,
therefore it should not refer or use elements of other objects;

• reusable – an object can be used in various contexts, for multiple learning
purposes, on different learning environments; the idea is to create a single time
and distribute many times;

• of low granularity – small-sized objects provide flexibility; the main assumption
is that the smaller an object is, the easier it can be reused in new learning
situations;

• can be combined – small-sized components can be combined to create more
complex units of learning; for objects with greater granularity, the combination is
more difficult, because of the many types of integrated elements and the links
between them;

• have potential for personalized learning – the existence of multiple possibilities
for objects coupling facilitates the adaptation of the courses to the students’
learning requirements;

• tagged with metadata – objects’ labeling and description will allow an easy and
accurate identification and searching.

However, the main benefit of learning objects is their reuse potential. The reusability
facilitates the educational resources exchange between software developers,

organizations, institutions, or teachers. Thanks to this interchange, the objects acquire
value; without it, they remain simple digital components or web pages.

3. Learning Objects Granularity

Learning objects granularity is an important feature referring to the objects size. The
components small dimension is a fundamental requirement to facilitate their reuse. The
main hypothesis is that if an object is smaller, it is easier to reuse it in new training
contexts [BALA08]. In these situations, the components should be combined with others
to form more complex units of learning. Small-sized objects are more flexible, based on
the fact that the same training material can be used repeatedly.

Starting from this idea, one solution adopted in the current approach consisted in
designing learning objects of different levels of granularity. Therefore, three categories
were defined: fundamental objects, instructional components, and compound objects.

Figure 1. Learning objects granularity

The simplest object is a fundamental component, for example a text, a function, or a
mathematical formula. They will underpin the development of instructional objects and
will be used to manage their interaction. An instructional component gains value when it
is included in a lesson. More components can be combined to create a lesson, and at the
same time, a component can be used in different lessons. In order to ensure a longer
training experience, the lessons are grouped in chapters according to the curriculum.

4. Fundamental Objects

These are basic components having a low granularity, which do not pursue a training
objective. They were developed in order to manage the assembling of instructional
components. In this category we have:

• LatexForm – this component was introduced with the purpose of ensuring the
conversion of other objects into Latex format. Such a format provides a platform-
independent way of writing mathematical equations, by using a textual language that
facilitates the storage, interpretation, management, or compression of formulas. The
mathematical functions and formulas associated to the instructional objects can then be
stored, reused, or construed, so that to be compiled and evaluated by other components.
The LatexForm objects are part of the TexEq components that can display the formulas in
a visual equational form.

• Function – this is an object specific to the mathematics field of study. It is
designed to handle one-variable mathematical functions, which are defined by their
analytical expressions. Such Function objects are included in instructional components of
type FctEval (performs the syntactic validation of the analytical form), FctGraph (draws
the function graph), FctTable (tabulates the function values), FctGraphCmp (draws a
comparative graphical representation of several functions), and FctTableCmp (tabulates
the values of several functions). In addition, the equational visualization of the function
formula is provided by TexEq components; this can be done due to the conversions to and
from LatexForm type.

The Function class is designed to cover an important mathematical concept. Every
function is implemented through several analytical expressions; also, an essential
attribute of a function is its domain of definition. Thus, a Function object can be further
decomposed into components of lower granularity, given that it incorporates other
objects that implement the analytical expressions and their associated intervals. For
each of its expressions, a Function object will contain one member of type ExprPol (to
implement the analytical form) and one member of type Interval (to handle the
associated interval).

Figure 2. Function, ExprPol and Interval classes

In addition to compiling and evaluating mathematical expressions, the Function class
offers the possibility of calculating the derivatives of real-valued functions. This operation
is handled by the interaction between two FctEval objects: the source control will contain
the original mathematical function, whereas its derivative will be calculated in the
destination component.

The conversion between these two objects (LatexForm and Function), allows the user to
choose editing the mathematical expressions in computational language or in Latex. Thus, if
the author prefers to edit the function in Latex or to retrieve it from a TexEq object in this
format, the associated Function object will be generated by the FunctionFromLatex method.

public static Function FunctionFromLatex(LatexForm LF)
{
 string latex = LF.latex_string;
 latex = latex.Replace('\\', '/');
 latex = latex.Replace("f(x)=", "");
 latex = latex.Replace("/left/{/begin{array}{", "");
 latex = latex.Replace("///end{array} /right.", "");
 latex = latex.Remove(0, latex.IndexOf('}') + 1);
 Function F = new Function();
 latex = F.ReplaceDinLatex(latex);
 latex = latex.Replace("//", ";");
 string[] tokens = latex.Split(';', (char)(StringSplitOptions.RemoveEmptyEntries));
 F.n = tokens.Count() / 2;
 for (int i = 0; i < F.n; i++)
 {
 F.s_expresia[i] = tokens[2 * i].Trim();
 F.interval[i] = Interval.IntervalDinLatex(tokens[2 * i + 1].Trim());
 F.expresia[i] = new ExprPol(F.s_expresia[i]);
 }
 return F;
}

The mathematical functions associated with instructional objects will be stored in the
database in Latex format. In addition, the TexEq components work with the same textual
format and no longer contain a Function object. Thus, storing the mathematical functions
and managing the interactions of TexEq objects with other controls, are facilitated by the
reverse conversion to Latex format, which is performed by the FunctionToLatex method.

public LatexForm FunctionToLatex()
{
 string latex = "f(x)=/left/{/begin{array}{";
 string align = "";
 for (int i = 0; i < n; i++) align += 'l';
 latex += align + "}";
 for (int i = 0; i < n; i++)
 {
 string expresia = s_expresia[i];
 expresia = expresia.Replace("/", " / ");
 latex += expresia;
 latex += "; x" + (interval[i].s_interval.Contains(",") == true ? " /in " : " = ");
 latex += interval[i].s_interval;
 latex += "// ";
 }
 latex += " /end{array} /right.";
 latex = ReplaceCatreLatex(latex);
 latex = latex.Replace('/', '\\');
 latex = latex.Replace(" \\ ", "/");

 s_latex = latex;
 LatexForm LF = new LatexForm(latex);
 return LF;
}

5. Instructional Components

The instructional components were defined with the purpose of covering some important
mathematical notions related to the concept of function. They can be used or reused
independently, or can be combined or assembled in order to effectively develop new
mathematics lessons.

The behavior of these instructional components is determined by their assembling and
coupling possibilities. The mathematical functions on which they operate are given
through fundamental objects. Therefore, each instructional component includes one or
more fundamental objects of type Function or LatexForm, that also have the role to
control the way they interact.

• FctEval (function evaluator) – this component was introduced with the purpose
of handling real-valued functions. The functions are given through one or more
analytical expressions and their associated intervals of definition. The control
performs the syntactic validation, analysis and evaluation of the function
expressions, as well as a validation of the definition intervals.

The user can input the function in both supported formats (Latex or usual language), due
to the existing conversions between fundamental objects (from Function type objects to
LatexForm, and vice versa).

Figure 3. FctEval component

When the user requests the evaluation of the mathematical function, a Function type
object is automatically generated. The Function object is associated with the component
and will be used for the subsequent interactions with other controls.

The buttons attached to the control enable the management of all the function expressions.
When adding or deleting an expression, the associated Function object is automatically
recalculated. This is done by two methods belonging to the Function class.

The process of evaluating the function consists of four tasks: syntactic analyzing the
function expressions, validating the intervals associated with the expressions, rearranging
the expressions in the order determined by their intervals, and calculating the function
values in the definition domain.

• FctTable and FctTableCmp (tables of function values) – these two types of
components calculate the values of one or more functions on their domain of
definition. These two objects are alike, the difference between them being that the
FctTable component works with one function, whereas the FctTableCmp control
operates with more functions.

(a) (b)
Figure 4. FctTable (a) and FctTableCmp (b) components

Like other instructional components, these controls also contain one or more Function
class objects, which are copied from a FctEval control, as a consequence of their
interaction. Thus, this operation will cause calculating the functions values, generating a
DataSet containing these values, and loading it in a DataGrid object.

Furthermore, a one-directional interaction between FctTable and FctTableCmp has been
defined, which determines the addition of a new function to the second object.

• FctGraph (graph of a function) – this object is designed to draw a function graph
over the definition range. The function to be plotted will be taken from FctEval or
FctTable components. Once again, the Function class object associated with the
component is obtained from the similar object belonging to the control the current
component interacted with. After the function is evaluated, the Graphics module
will perform the tasks of calculating the axes and drawing the graph.

Figure 5. FctGraph component

This component can also be used to illustrate some other concepts related to the graphical
representation of functions, namely:

 the derivative of a function at a point – this is the slope of the tangent line to the
graph of the function at that point;

 the definite integral over an interval – its value is calculated as being the area of
the region bounded by the graph of the function and the x-axis, over the given
closed interval;

 the asymptotes of the function – the control facilitates the drawing of the
horizontal, vertical or oblique asymptotes of the given function.

• FctGraphCmp (graph of multiple functions) – this component supports graphing
more functions together. The functions to be graphed can be copied from a
FctTableCmp control or can be added through repeated interactions with FctEval,
FctTable, or FctGraph components.

Figure 6. FctGraphCmp component

The mathematical functions that are tabulated or plotted by the FctGraphCmp and
FctTableCmp components can be handled using the context menu associated with the
control. Thus, the functions will be converted and displayed in Latex format and the user
can choose to delete some of them. This will lead to updating the list of functions
included in the component, and consequently recalculating the axes and redrawing the
graph.

The toolbar integrated in the component contains buttons for resizing and scaling the
graph. Resizing the object is a simple operation involving resizing the panel where the
graph is drawn, whereas scaling causes the recalculation of the axes and redrawing the
functions graphs according to the new axes.

• TexEq (Latex equation editor) – this component has the role of an equation
editor, but it can also act as a simple text editor. Thus, the mathematical
expressions are input using Latex syntax, which is then translated and displayed
in visual equational form.

Figure 7. TexEq component

This type of object can also be used to visualize the functions associated with other
instructional components. Even if TexEq controls no longer contain a Function object,
they can interact with other objects due to the existing conversions to and from Latex
format.

6. Compound Objects

Compound objects are complex objects that are created by combining more instructional
components. The learning context is provided when the mathematics lessons are
developed, as the pedagogical aspect is handled through the assembling operation.

Basically, a lesson consists of several interrelated instructional components. The software
allows decomposing the lesson into elementary objects, which can be used independently
or can be reassembled according to the teacher’s choice. Each lesson and the objects that
compose it can be stored in the database, so that to allow their subsequent use.
Consequently, the author might reuse an existing lesson or can reconfigure it by adding,
removing, or modifying its components. The individual objects can also be reused
separately of the lesson they belong to, in order to be used for creating new lessons. This
feature facilitates the development of new learning content and more complex lessons.

Through simple drag-and-drop operations, the teacher is able to author his own
mathematics lessons by assembling the components at his disposal. The objects can be
coupled, configured, moved, and deleted, without affecting the remaining content. The
coupling possibilities are numerous being determined, on one hand, by the instructional
components variety and, on the other hand, by the need to illustrate the correlations
between the mathematical concepts they implement.

Figure 8. Authoring a lesson by combining objects

The interactions between instructional components are handled through mediator objects
that act as intermediary between interdependent components. This way of managing
interactions facilitates components decoupling and ensures their independence. All
components contain one or more such fundamental objects (Function or LatexForm),
which, in addition to the role of mediating interactions, facilitate their copying and
storing.

Interactions are implemented through simple drag-and-drop operations. The ease of
combining the learning components, allows the teachers to effortlessly create and
configure their own lessons.

7. Conclusion

A learning object approach has many benefits for creating educational resources and also
for developing training platforms. The main reason for using this technology is given by
its potential of reusing and customizing the learning materials. However, creating a lesson
by combining independent low-granularity objects is problematic, given that the software
must meet certain qualitative training requirements.

Therefore, the instructional components were designed in order to cover some important
mathematical notions, while their interactions were defined considering the relations
between these concepts. The coupling possibilities provide the functionalities needed for a
math learning environment, facilitating the presentation of several field specific concepts,
such as tabulating a function values or drawing a function graph. By using this platform,
the teacher can combine the available items in order to create new lessons or to adapt the
existing ones.

Given that recent years were marked by considerable efforts to promote computer-assisted
learning, and most students prefer the information provided on the Internet, such an e-
Learning solution meets these options.

8. Bibliography

1. [ALLE10] Allen C.A., Mugisa E.K., Improving Learning Object Reuse Through OOD: A
Theory of Learning Objects, Journal of Object Technology, vol. 9, no. 6, pp. 51–75, ISSN
1660-1769, 2010, [http://www.jot.fm/issues/issue_2010_11/article3.pdf]

2. [BALA08] Balatsoukas P., Morris A., O’Brien A., Learning Objects Update: Review and
Critical Approach to Content Aggregation, Educational Technology & Society, vol. 11(2), pp.
119-130, ISSN 1436-4522, ISSN 1176-3647, 2008,
[http://www.ifets.info/journals/11_2/11.pdf]

3. [FRAN08] Francis D.E., Murphy E. Instructional designers' conceptualisations of
learning objects. Australasian Journal of Educational Technology, vol. 24(5), pp. 475-
486, ISSN 1449-5554, ISSN 1449-3098, 2008,
[http://www.ascilite.org.au/ajet/ajet24/francis.html]

4. [KNOL03] Knolmayer G.F., Decision support models for composing and navigating
through e-learning objects, Proceedings of the 36th Annual Hawaii International
Conference on Systems Sciences, pg. 10, ISBN 0-7695-1874-5, 2003

5. [POLS03] Polsani P.R., Use and Abuse of Reusable Learning Objects, Journal of Digital
Information, vol. 3(4), article 164, pg. 10, 2003, ISSN 1368-7506,
[http://journals.tdl.org/jodi/article/view/89/88]

6. [SMEU08] Smeureanu I., Dârdală M., Reveiu A. Component Based Framework for
Authoring and Multimedia Training in Mathematics. Proceedings of World Academy of
Science, Engineering and Technology, vol. 29, pp. 230-234, ISSN 1307-6884, 2008

	Abstract:
	1. Introduction
	2. Learning Objects Technology
	3. Learning Objects Granularity
	4. Fundamental Objects
	5. Instructional Components
	6. Compound Objects
	7. Conclusion
	8. Bibliography

