
JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

384

COMPRESSION STRATEGIES OF 2D POINT CLOUDS

Marian Stan 1*

Ionut Spataru 2

Ion Bucur 3

ABSTRACT

The purpose of this article is to describe the concept of point clouds and to present the

main idea and the important steps made in this research domain. This article also

presents methods that aim to solve the point clouds compression problem.

KEYWORDS: point clouds, Delaunay triangulation, alpha shapes, marching cubes,

quad-tree, KD-tree, Huffman.

INTRODUCTION

Point clouds are just large collections of coordinates stored in a set. They can be stored in

a bi-dimensional or a three-dimensional coordinate system, depending of the case, we

may have X, Y or X, Y and Z coordinates. They are the basic structure in every new

design process, and can be created using 3D scanners. When an object is scanned with

such a device, a very large number of points is generated, the surface data file.

The usage of point clouds is getting bigger and bigger every day, few examples are 3D

CAD models, metrology, animations and medical imaging.

The main problem with point clouds is that they cannot be used as they are, first they have

to be converted to a polygon mesh, Nurbs surface etc.

The main techniques of converting these point clouds are for now Delaunay triangulation,

alpha shapes and marching cubes.

THE NEED FOR POINT CLOUD COMPRESSION

We are living in a world where every bit counts, even with the great speed that we

achieved on transfer between machines, we are still highly concerned about making every

data-package smaller without any data loss.

Point clouds make no exception from this rule, their use increases every day, and new

ways of making their size smaller and smaller emerge.

1* corresponding author, Engineer, ”Politehnica” University of Bucharest, Romania, marianstan7@gmail.com
2 Engineer, ”Politehnica” University of Bucharest, 060042 Bucharest, Romania, spataru.ionut91@yahoo.com
3 Associate Professor PhD Eng., ”Politehnica” University of Bucharest, 060042 Bucharest, Romania,

ion.bucur@cs.pub.ro

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

385

How can this data be compressed, how to make its space complexity smaller, because a

big data set can be problematic. The goal is to achieve a smaller data set without any loss

when compressing or uncompressing the data.

For this, we have used a variety of methods, each of them with different results. We’ve

started with a bi-dimensional data, aiming to achieve new and better ways of compressing

point cloud data.

PREVIOUS WORK

Up until now, the main techniques of manipulating point clouds where Delaunay

triangulation, alpha shapes and marching cubes.

Delaunay triangulations

Both in geometry and mathematics, the Delaunay triangulation is, for a set of points (P in

this example) a triangulation under the rule that no point from P is contained in a

circumcircle of a triangle in DT(P). So this method, named Delaunay triangulation,

maximizes the minimum angle of all the angles, of the triangles, inside the triangulation.

Boris Delaunay is the one that named this method in 1934. There cannot be a Delaunay

triangulation for a set of points that are on the same line. There is no unique triangulation

for more than 4 points stored on the same circle.

If you consider circumscribed spheres, then the Delaunay triangulation can be extended to

more than three dimensions. There can be generalizations, even other than Euclidean, but

in these cases it is not a certainty that a Delaunay triangulation exists, or even be unique.

Alpha Shapes

In geometry, the alpha shapes are a group of piecewise linear simple curves in the

Euclidean plane, group that is associated with the shape of a finite set of points. The alpha

shapes were initiated by Edelsbrunner, Kirkpatrick and Seidel and derived from the

convex hull, so that each convex hull is an alpha-shape but not every alpha shape is a

convex hull.

For each real number R, define the concept of a generalized disk of radius 1/R as follows:

 If R = 0, it is a closed half-plane;

 If R > 0, it is closed disk of radius 1/R;

 If R < 0, it is the closure of the complement of a disk of radius -1/R.

After this, an edge is drawn between two of the members of the finite set of points. This

edge will be drawn only if there is a generalized disk with the radius 1/R that contains the

entire set of points and which has a property that the two points lie on its boundary.

Marching Cubes

First published in 1987 by Lorensen and Cline, the “Marching cubes” algorithm is used

for extracting a polygonal mesh of an object, from a three-dimensional surface.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

386

This algorithm works by taking eight neighbor locations at a time, this eight location are

forming a cube. After this, the polygons that are needed to represent this cube are

determined, merging the individual polygons in a surface is the final step.

THE COMPRESSION STRATEGIES

Quad-tree algorithm

One of the most successful algorithms is the quad-tree algorithm. It is aimed to compress

a bi-dimensional array with very good results.

Figure 1. A quad-tree.

In figure 1 it is represented a quad-tree that contains information about the pixels of a

black and white image, with a dimension of 8 * 8 pixels. The first node represents the

whole image, the next nodes represent a quarter of the image and so on until each node

represents a pixel in the image.

To represent a node, each zone is enumerated, from which that node is a part of, from the

root to the leaf node. This would mean 6 bits, and it is the same as to represent a point in a

space of 8 *8. In case it is wanted to represent all of the points, it is enough to enumerate

the nodes and a number of bits will be obtained. This can be much more efficient than to

represent each point through coordinates.

In figure 1, each node from the last level could be represented with 21 bits like so: 4 (level

1) + 8 (level 2) + 8 (level 3) = 21 bits, which is less than 48 bits (8 * 6) (3 bits for each

coordinate), that is a compression rate of 57%.

For the whole picture of 64 points, it would only need 81 (4 + 16 + 64) bits, compared to

384 (64 * 6) bits that are now, this representing a compression rate of 79%. The more, the

better, with each bigger test data, the compression rate improves.

To sum up, this is one of the best algorithms implemented, it has a space complexity of

O(n + n log(n) + n / 2) and a time complexity of O(n + n log(n)) for encoding and a space

complexity of O(n) and a time complexity of O(n) for decoding.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

387

Overall, it manages to obtain a compression rate of about 71%.

KD-Tree algorithm

Another approach used for compression is the KD-Tree algorithm. This algorithm divides

the space from one of the axis; usually this division is made through one of the points that

are already in existence.

It should stop when it reaches a minimum dimension or when it reaches the minimum

number of points per cell.

Figure 2. A KD-tree.

For example, in figure 2, it is a picture of a KD-tree with the dimension of 2b * 2b, where

b represents the number of bits. The most significant bit on the left is taken for this

algorithm, which is 0, along with the most significant bit on the right which is 1.

It will stop when it reaches an empty cell or when it reaches the highest level, meaning

2*b (number of bits).

First, the interval of the parent node is divided in two. Each node will represent the

number of points that it contains, it will keep only one of its ‘sons’, because the other one

can be deduced afterwards.

The number of bits needed to write the number of points, is equal to the number of points

read from the root node, so to represent a child node it is needed a number of bits equal

to: log (number of points the ‘parent’ contains). This is represented in figure 3.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

388

Figure 3. A KD-tree split scenario.

Figure 4. The representation of the resulted tree.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

389

This algorithm has a compression rate of about 71% on small files and 78% on bigger ones.

The space complexity of the encoding of this algorithm is O(n2). The time complexity is

O(n * log(n) + log(n)) * (dimension of the KD – Tree > n).

Huffman algorithm with move-to-front transform

Another algorithm used is composed from the following two steps:

 1) Encoding the coordinate’s fractional part of each 2D point;

 2) Compressing the result from step one with the use of Huffman algorithm and a

move-to-front transformation.

The first step was introduced because the fractional part is mostly a random number,

number that can’t be compressed with great success.

First step is sorting in ascending order each point by the fractional part of the X

coordinate, fractional part of the Y coordinate, the whole part of the X coordinate and

whole part of the Y coordinate. After this, the fractional part of each coordinate, is

replaced with a vector of 216 elements, then the whole parts are put in place.

We will treat the fractional part and the whole part as a string, after concatenating them,

the result will be used in key-value pair system where the resulting string is the key, and

the number of occurrences is the value.

After sorting this vector, the result is represented by a number of elements that repeat

themselves. To represent this vector only 123Kb are needed in our main compression

scenario.

To decode this vector, it is expanded first, then the fractional part is repeated by the

number that was initially present in the vector, regrouping each element, will return the

initial vector.

In the second part of this algorithm, a move-to-front strategy is applied against the result

obtained in the first part, followed by a Huffman encoding.

The move-to-front strategy is a method of encoding the data designed to improve the

entropy encoding techniques. In this algorithm, the symbols used are inserted in a list,

initially this list containing all possible symbols in a lexicographical order. Each

processed symbol is replaced by its index from the list, and that symbol is moved in front

of the list.

So the symbols that appear more often will be replaced with smaller values; this

transformation is reversible without the need of any additional data.

The Huffman encoding is a method of compression data without any loss, using prefix

codes. The most frequent symbols are replaced with smaller codes, and the symbols that

show up less often are replaced with longer codes. The length of each symbol is inversely

with the frequency of the symbol. Canonical Huffman codes are used to ease the encoding

and decoding.

The time and space complexity of this algorithm are O(n * log(n)) and O(n) respectively

for encoding and O(n) and O(n) respectively for decoding.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

390

OBTAINED RESULTS

Table 1 summarizes the results of the aforementioned compression methods. The Quad-

tree algorithm seems to be the best one, having the best compression rate, the best

memory usage and some good compression and decompression times.

The KD-tree algorithm seems to be the worst one, because it has bigger execution time and

memory usage, and the Huffman MTF algorithm has a slightly worse compression rate.

Table 1. Compression results

Algorithm Test Compression

Quad-tree

64c1 0.6757

64c4 0.7395

64c16 0.8022

128b1 0.6436

128b4 0.7088

128b16 0.7715

256a1 0.6476

256a4 0.713

256a16 0.7761

KD-tree

64c1 0.671

64c4 0.7336

64c16 0.7961

128b1 0.6409

128b4 0.7036

128b16 0.7662

256a1 0.646

256a4 0.7087

256a16 0.7712

Huffman with move-to-front transformation

64c1 0.6056

64c4 0.6439

64c16 0.7022

128b1 0.5564

128b4 0.5935

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

391

Algorithm Test Compression

128b16 0.6631

256a1 0.5164

256a4 0.5764

256a16 0.6525

FUTURE WORK

Introducing multithreading operation is one of the biggest improvements that can be

achieved.

The compression may be improved by using a key-value pair system with a variable

number of bits and using a Dynamic Huffman Algorithm.

The Huffman algorithm can be used on smaller chucks of data so that the local

distribution of points can be exploited.

Stepping up to compressing 3D point clouds will be the next challenge.

CONCLUSIONS

Point clouds are, without any doubt, very important in medical and CAD systems.

Creating, storing, and compressing them will always be a challenge, new algorithms and

techniques will arise for each of these steps. We will continue our work on this subject

because of the vast improvements that can be done.

We will end with an interesting fact, that proves the actual necessity to transfer fast and

accurate large amounts of raw data: on December 29, 2014 the first-ever hand tool 3d

model was emailed up to the International Space Station so that it can be printed there. It

was the first object designed on Earth and printed in space. The 11.4 centimeter wrench

can now be downloaded from everywhere because N.A.S.A made it public.

ACKNOWLEDGEMENTS

The authors would like to thank students Emanuel Ungureanu, Sabina Batranu, Ciprian

Apetrei, Gabriel Ivanica and Dorian Dogaru for their great support and assistance with

this paper.

REFERENCES

[1] Yvinec, Mariette. "2D Triangulation". Retrieved April 2010

[2] Pion, Sylvain; Teillaud, Monique. "3D Triangulations". April 2010

[3] Hornus, Samuel; Devillers, Olivier; Jamin, Clément. "dD Triangulations"

[4] Hert, Susan; Seel, Michael. "dD Convex Hulls and Delaunay

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

392

[5] T N. Akkiraju, H. Edelsbrunner, M. Facello, P. Fu, E. P. Mucke, and C. Varela. "Alpha

shapes: definition and software". In Proc. Internat. Comput. Geom. Software Workshop

1995, Minneapolis

[6] Edelsbrunner, Herbert (1995), "Smooth surfaces for multi-scale shape representation",

Invited Talk, Foundations of Software Technology and Theoretical Computer Science,

Volume 1026 of the series Lecture Notes in Computer Science pp 391-412, 31 May 2005

[7] Lorensen, W. E.; Cline, Harvey E. (1987). "Marching cubes: A high resolution 3d surface

construction algorithm". ACM Computer Graphics 21 (4): 163–169

[8] Nielson, G. M.; Hamann, Bernd (1991). "The asymptotic decider: resolving the ambiguity

in marching cubes". Proc. 2nd conference on Visualization (VIS' 91): 83–91

[9] Montani, Claudio; Scateni, Riccardo; Scopigno, Roberto (1994). "A modified look-up table

for implicit disambiguation of Marching cubes". The Visual Computer 10 (6): 353–355

[10] Rusinkiewicz, S. and Levoy, M. 2000. QSplat: a multiresolution point rendering system for

large meshes. In Siggraph 2000. ACM , New York, NY, 343–352. DOI= http:// doi.acm.org/

10.1145/ 344779.344940, june 2016

[11] Meshing Point Clouds A short tutorial on how to build surfaces from point clouds, http://

meshlabstuff.blogspot.ro/ 2009/ 09/ meshing-point-clouds.html, june 2016

[12] Costin-Anton Boiangiu, “The Beta-Shape Algorithm for Polygonal Contour

Reconstruction”, CSCS14 – “The 14th International Conference on Control Systems and

Computer Science”, Bucharest, Romania, July 2003, pp. 29-33

[13] Costin-Anton Boiangiu, Mihai Zaharescu, “Beta-shape using Delaunay-based triangle

erosion”, in Proceedings of the 18th International Conference on Applied Mathematics

(AMATH '13), Budapest, Hungary, December 10-12, 2013, pp.97-101

[14] Costin-Anton Boiangiu, Ion Bucur, Andrei Iulian Dvornic. “The Beta-Star Shape Algorithm

for Document Clipping”. Annals of DAAAM for 2008, Proceedings of the 19th

International DAAAM Symposium, Trnava, Slovakia, October 22-25, 2008, pp. 0127–0128

[15] Costin-Anton Boiangiu, Mihai Zaharescu, Ion Bucur - „Building Non-Overlapping

Polygons for Image Document Layout Analysis Results”, Journal of Information Systems &

Operations Management (JISOM), the Proceedings of Journal ISOM, Vol. 6 No. 2 /

December 2012, pp. 428-436

[16] Costin-Anton Boiangiu, Bogdan Raducanu, Serban Petrescu, Ion Bucur, “Ensure Non-

Overlapping in Document Layout Analysis”, 20th DAAAM World Symposium, Austria

Center Vienna (ACV), 25-28th of November 2009, pp.327-328.

