
JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

448

A MIXED APPROACH TOWARDS IMPROVING SOFTWARE PERFORMANCE

OF COMPUTE UNIFIED DEVICE ARCHITECTURE APPLICATIONS

Alexandru Pîrjan 1*

ABSTRACT

One of the most important aspects when developing applications that leverage the

powerful parallel processing power of graphics processing units (GPUs) that offer

support for the Compute Unified Device Architecture (CUDA) is to divide the tasks that

are to be processed appropriately into sections that can be processed either serially or in

parallel. The paper analyses this important developing issue by proposing a mixed

approach to programming efficient software applications. The article makes an in depth

analysis of the key aspects that carry significant weight when deciding to parallelize a

certain part of an application: the analysis phase of the application that is about to be

parallelized; the amount of time involved to achieve the implementation; the feasibility of

parallelizing the source code; situations when one should aim for central processing units

optimization techniques that yield better performance on sequential source code rather

than parallelizing the whole algorithm.

KEYWORDS: mixed approach, software performance, CUDA, Parallel Nsight, CUDA

Profiler.

1. INTRODUCTION

In recent years, there has been a great interest in the literature for developing optimization

solutions using the parallel processing power of graphics processing units [1], [2], [3].

The optimization of data processing is a field of great interest due to its numerous

applications: in developing intelligent systems [4], [5], in cryptography [6], in developing

office applications [7], in electronic payment systems [8], [9], in developing web

applications [10], [11].

The Compute Unified Device Architecture, implemented in the latest graphics processing

units, offers developers the opportunity to use an extension to the traditional C language

that makes it possible to write the source code in the familiar C programming language.

When developing a CUDA application, the programmer must write source code for both

the central processing unit (host) and for the graphics processing unit (device).

The central processing unit (CPU) calls a large number of kernel functions on the device

that will use its internal task scheduler to establish the most suitable strategy of allocating

the functions (kernels). As long as there is a sufficient amount of parallelism in the task

that is being processed, the processing time of the program should improve as the number

of graphics processing unit’s Streaming Multiprocessors (SMs) increases.

1* corresponding author, Lecturer PhD, Faculty of Computer Science for Business Management, Romanian-

American University, 1B, Expozitiei Blvd., district 1, code 012101, Bucharest, Romania, alex@pirjan.com

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

449

The performance improvement of a CUDA software application should take into

consideration a series of optimization aspects, such as: dividing the tasks appropriately

into sections that can be afterwards processed either serially or in parallel; an appropriate

managing of the graphics processing units' memory and their associated data transfers

between the device (GPU) and the host (CPU); understanding in detail the CUDA

threading mechanism and the hardware's computational capability, that determines the

GPU's processing features; having an insight of the ready-optimized algorithms;

identifying the weak points that hold down the performance of the application, their

causes and solutions for minimizing their impact; having in mind to always develop

reusable and scalable code, that can be easily maintained and upgraded to support future

versions of the GPUs.

The first of the above mentioned optimization aspects, dividing the tasks appropriately

into sections that can be afterwards processed either serially or in parallel, is essential and

its analysis as a software performance improvement method represents the purpose of this

paper. Therefore, in the following it is analyzed a mixed approach in order to optimize

software applications by means of parallelization in the Compute Unified Device

Architecture.

In this paper it has been made an in depth analysis of the key aspects that carry significant

weight when deciding to parallelize a certain part of an application: the analysis phase of

the application that is about to be parallelized; the amount of time involved to achieve the

implementation; the feasibility of parallelizing the source code; situations when one

should aim for central processing units optimization techniques that yield better

performance on sequential source code rather than parallelizing the whole algorithm.

2. DIVIDING THE DATA AND TASKS IN VIEW OF PARALLEL PROCESSING

IN CUDA

The first thing one should have in mind when improving the software performance of an

application by means of parallelization in CUDA, is how much of the code is suitable to

be processed in parallel. The quantity of source code that can be processed solely

sequentially limits the improvement in software performance that can be achieved by

parallelization.

For that reason, the first thing that the developer must do, is to take into consideration

whether there is a sufficiently great number of tasks that can benefit from the

parallelization process, so he must be certain that parallelization is indeed the best

solution. Of central importance for the developer is to identify if the problem he wants to

solve can be divided into more parts that can be processed in parallel.

If there is no way to expose concurrency by dividing the task into several ones, the

developer should instead focus on central processing units optimization techniques that

yield better performance on sequential source code rather than parallelizing the whole

algorithm. There are many optimization techniques that, after having been applied, make

the sequential code perform in a satisfactory way. The graphics processing units can

invoke thousands of threads, so if one wants to benefit the most from the huge parallel

processing power of the CUDA GPUs, he should be able to divide the task into thousands

of simultaneously ones.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

450

One should always begin to analyze initially the data and afterwards the tasks that must be

processed. One should always have in mind the final obtained data set and reflect whether

there exist one or more transformation rules that represent the output data in a certain

point through the input one, in the same point. In the case in which such transformation is

possible, it is feasible to parallelize the problem, using the CUDA architecture.

The programmer must correctly identify the approach that is most suitable for optimizing

his application: a whole sequential approach, an exclusive parallel approach or a mix

between the sequential and the parallel approaches. For most of the problems, a

parallelization solution that produces the best results can be identified and applied. The

problem actually lies in the fact that many developers are accustomed to single-threaded

applications and they fail to seek and identify the possibility of parallelizing the source

code.

There are certain situations in which the sequential approach is entirely unpractical, like

the H264 video encoding [12]. Regarding this problem, it comprises a number of stages

and each of them produces an output data stream varying in length. Every destination

pixel depends on 𝑛 of the source pixels. A various number of scientific problems exert the

same particularities. There are some situations when the input data set is huge and a pre-

filtering might be applied to it. As a result, those data points whose impact on the output

data is small, are removed from the data set. This process will indeed lead to a small

increase of error, but in certain cases the advantages outweigh the disadvantages, as long

as the final error stays below a threshold.

Up till now, the optimization process focused solely on the operations that were being

applied to the data. Nowadays, the focus is on the data, as the processing power of GPUs

has grown dramatically in contrast with the memory bandwidth. In order to efficiently use

the memory bandwidth of the graphics processing unit that is up to 10 times the one of the

central processing unit, one must properly divide the problem, as to make use of the

increased bandwidth.

Particular attention must be payed when dividing the data to more graphics processing

units linked together, as the traffic between the different graphics processing units will

have a negative impact on the computation cycles therefore affecting the total processing

time of the application. Consequently, this penalty must be minimized and compensated

through the computational volume and processing power.

3. SOLVING THE DEPENDENCY PROBLEM

There are situations when the current computation needs the output of a previous one,

thus arising a dependency problem when a certain variable cannot be computed without

knowing beforehand the value of another variable, or a value from a previous step. In

some cases, for computing the value of one variable one needs the output resulting from

computing one or several variables, while in other cases the result of a computation from

a previous step is needed in order to perform the current step. This dependency problem

impedes the possibility of parallelizing the application or a certain step of an algorithm. In

this situation, it is only the current step that can be the parallelized.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

451

Figure 1. An example of a dependency situation occurring within a kernel

In Figure 1 is presented an example of dependency situations that may occur within a

kernel function. Thus, in this case, the value of the 𝑥 and 𝑦 variables cannot be computed

without knowing the value of the 𝑧 variable, so one can say that 𝑥 and 𝑦 depend on the

variable 𝑧. After having computed the value of the variable 𝑧, one can parallelize the

computation of 𝑥 and 𝑦.

One can also remark that the variable 𝑡 depends on the variables 𝑥 and 𝑦. Therefore, the

value of the variable 𝑡 cannot be computed without knowing the values of the before

mentioned variables. The computation of this variable cannot be parallelized with the

computation of 𝑥 and 𝑦, it must be executed in a subsequent step.

In the above mentioned example, parallelism cannot be employed efficiently and both the

central processing unit and the graphics processing unit use multiple threads to

compensate for this drawback.

In what concerns the central processing units that support the hyperthreading feature,

there can be employed other virtual central processing unit cores to compensate for the

idle time. The central processing unit must manage precisely the allocation of the

instructions to different threads. The graphics processing unit makes use of multiple

threads that are switched alternatively, at different moments of time, as to compensate

most or even the whole latency that has been induced by the needed computations.

One solution to facilitate the parallel execution of the above mentioned kernel code is to

use an overlapping independent instructions technique [12]. In this case, one can insert

new variables and several independent instructions between the computations, thus

granting the computations an additional time to compute before obtaining the output, but

this additional time will be compensated by being able to process in parallel the

independent instructions that contain intermediary results of the variable.

Practically, this technique compensates the latency resulting from the arithmetic

computations, by means of instructions level parallelism. This mechanism makes it

possible for the compiler or for the processing unit not only to overlap the processing of a

set of computation instructions, but also to modify the instructions' execution order.

Another method used for solving dependency issues is the loop fusion technique. As one

can see in Figure 2, the number of steps necessary to compute the kernel function

compute_1 exceeds the number of steps necessary for the kernel function compute_2. If

we analyze the kernels closely we can notice that a considerable part of the first loop's

iterations from the kernel function compute_1 overlaps the iterations of the second loop of

the same kernel.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

452

Figure 2. An example of a loop fusion technique that inserts independent instructions and obtains a

decrease in the number of instructions that have to be processed

As a consequence, one can allocate the part of iterations that overlap to the first loop of

the kernel, thus obtaining the optimized version compute_2 kernel (Figure 2), therefore

introducing independent instructions while obtaining a decrease in the overall number of

loop iterations, consequently cutting down the number of instructions that have to be

computed.

When performing the computation on a last generation graphics processing unit, one can

obtain a higher increase of performance by unrolling the two loops and allocating the

individual computations to different threads thus using only a kernel. A possible solution

consists in allocating two blocks of threads, the first block containing a number of

execution threads equal with the number of iterations of the first loop while the second

block contains a number of threads equal with the number of iterations of the second loop.

However, this approach can sometimes pose problems due to a decrease in the total

amount of parallelism exposed to the scheduling process of blocks and threads. If the

level of parallelism in an application is minor, the execution time will suffer a penalty due

to this approach. Moreover, the kernels spend more registry memory when they are fused,

therefore the number of possible blocks that can be invoked will be reduced.

One must take into account practical situations that arise when developing production

applications in which more passes are needed to solve the problem. In order to achieve

more passes, one needs to implement several sequential calls to the same kernel. If after

every iteration the kernel needs to access the global data for storing and retrieving the

data, the whole software performance of the application will suffer due to the high latency

of this type of memory.

One solution consists in refitting the data allocated to each of the kernel functions,

reducing the amount of processed data to an extent where it is possible to use shared and

registry memory types that offer considerable faster access times that will improve

substantially the overall software application performance.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

453

4. A COMPARISON BETWEEN THE TECHNICAL OPTIONS OF MANAGING

THE DATASET ON THE HOST AND THE DEVICE

When developing a software application, one must take into account the available

memory resources, the different types of memory with their associated characteristics and

the dimension of the data that the application must process. According to [12], the

requirements of a central processing unit are different from those of a graphics processing

unit as it is depicted in Table 1.

Table 1. A comparison between the amount of data that can be stored

in different types of memory on a CPU and a GPU

If the data set has a small dimension, one can increase the processing speed on the central

processing unit by using a CPU that has more cores. In this case, the increase of the

processing speed overpasses a linear trend due to the fact that every core of the processor

has a reduced amount of tasks to process. If the new amount of data that is smaller in

dimension is processed in the L2 cache memory instead of the L3 cache memory, one can

obtain a dramatic increase in performance because of the increased bandwidth that this

type of memory offers. If one used the L1 cache instead of the L2 cache memory, the

impact on performance would be even greater.

In the GPUs case, the most important aspect relies in the quantity of data that can be

stored on a single card. Copying data between the host and the device consumes a lot of

resources and affects the overall performance of the application. There are some graphic

processing units that allow to copy the data to and from the device simultaneously, but in

order to achieve this one must make use of the pinned memory feature. This type of

memory cannot be substituted by the system's virtual memory, so one has to use the

Dynamic Random-Access Memory of the system.

Nowadays most of the motherboards support at least two CUDA-enabled graphics

processing units and a maximum of four cards, using the Scalable Link Interface (SLI)

mode. If the requirements of a problem that must be solved involves a huge dataset, that

cannot be stored in a single computer, one has to use the internode communication

concept. Unfortunately, this implies a huge time penalty and advanced knowledge of

different application programming interfaces.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

454

5. DETECTING AND ISOLATING THE DEFICIENCIES IN DATA PROCESSING

When analyzing parallel architectures, a lot of the scientific papers refer to the Amdahl's

law that is useful to forecast, from the theoretical point of view, the speedup that might be

obtained if one uses more processing units.

If one denotes by 𝑆 the above mentioned speedup of processing a whole task, from the

theoretical point of view; by 𝑠 the speedup factor that improves the execution

performance of a certain part of a task, resulting from the enhancement of the system's

available resources; by 𝑝 the percentage from the processing time allocated to the part of

the task that improved after the upgrade, measured before this enhancement, the Amdahl's

law stipulates that:

𝑆(𝑠) =
1

1−𝑝+𝑝/𝑠
 (1)

From the equation (1) one can easily deduce that 𝑆(𝑠) ≤
1

1−𝑝
 (as 𝑝/𝑠 ≥ 0). Furthermore,

lim
𝑠→∞

𝑆(𝑠) =
1

1−𝑝
 . Analyzing these results, one can conclude that the improvement in the

execution performance of the entire task, from the theoretical point of view, raises along

with the enhancement of the system's available resources, but no matter how much the

resources are enhanced, the improvement is in every situation impeded by the part of the

task that has not improved after the upgrade.

In particular, in parallel computing, it is considered a case in which the execution of a

software application requires 48 hours on a central processing unit that incorporates only

one processing core. It is presumed that a certain part of the entire task (whose execution

takes 8 hours) cannot benefit from a potential enhancement of the system's available

resources (it is impossible to be executed in parallel), while for the remaining 𝑝 = 83% of

the entire task (whose execution takes initially the remaining 40 hours), the execution can

be parallelized, being improved along with the system's available resources.

Applying the above mentioned theoretical results, one can state that no matter how much

the resources are enhanced, the execution time cannot go beyond the threshold of 8 hours.

The speedup of processing a whole task, from the theoretical point of view, 𝑆(𝑠) is

always lower than or equal to
1

1−𝑝
= 5.88, meaning that the maximum improvement in the

execution time that can be achieved due to the parallelization of the algorithm is 5.88

times. Therefore, improving the software performance only by means of parallelization

has certain limits and a mixed approach should be employed that targets both the parallel

and the sequential aspects of optimization.

In order to acknowledge the deficiency points of an application, one must make use of the

profiling process. Without applying this process, developers may find themselves in the

situation that, after having spent a tremendous amount of time to fix a certain drawback

they had thought was crucial in the application, they do not achieve the desired results.

The development of a complex application usually implies more teams of professional

programmers that are working together on different parts of the application. It is entirely

possible that one programmer could think that he has identified a serious drawback in the

application only to realize later that it was not the case.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

455

Therefore, it is very important to use specific profiling tools like those offered by the

NVIDIA Company: the CUDA Profiler and the Parallel Nsight that provide a detailed and

comprehensible profiling analysis of a developed application. These tools are identifying

and analyzing the hardware counters, the deficiency points where processing time is

wasted and determine the total utilization of the graphics processing unit's resources.

Using the CUDA Memcheck tool, one can efficiently check if the memory bandwidth is

being used efficiently.

The CUDA Toolkit version 7.5 brings a very useful new feature to the NVIDIA Visual

Profiler, namely the ILP (Instruction-Level Profiling) support. This option can be used on

graphics processing units from the Maxwell and Pascal architectures and makes it easier

to identify drawbacks in the source code, to identify performance related issues. One can

even isolate certain lines from the source code along with assembly instructions that can

affect the performance negatively. The latest version of Visual Profiler can also generate a

pie chart that depicts the warp state distribution (Figure 3).

Figure 3. A pie chart generated using Visual Profiler

depicting the warp state distribution 1

When profiling an application one should pay particular attention at the part where the

source code consumes most of the total processing time. After all the problems signaled

by the profiling process have been resolved, dramatic improvements in the performance

of the application cannot be achieved unless the whole application is redesigned from

scratch.

Regarding this aspect, the Parallel Nsight tool from NVIDIA offers the possibility to run

several testing scenarios, in order to identify important information in the source code,

like: identifying the divergent threads or the code branches; important statistics regarding

the use of the different types of memory, like the cache memory and the obtained

1 The pie chart has been downloaded from the official NVIDIA documentation site

http://devblogs.nvidia.com/parallelforall/wp-

content/uploads/2015/09/Figure5_samplingPieChartRawCode.png , accessed on 09.27.2016, at 22:00

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

456

bandwidth in different types of memory; statistics regarding the main reasons for stalling;

the efficiency in issuing instructions; the attained FLoating-point Operations Per Second

(FLOPS)1.

6. PREPARING AND ALLOCATING THE TASKS TO THE CENTRAL AND TO

THE GRAPHICS PROCESSING UNITS

The applications that offer the best performance per Watt are the ones that are developed

based on a mixed approach: benefitting from the strong points of both the central

processing unit and the graphics processing one, allocating the data appropriately. The

central processing unit must not be ignored even if one transfers most of the

computational burden to the graphics processing unit.

When developing production applications, other restrictions might come into play, such as

the network, the input/output bandwidth of the system. Nowadays, computers have a lot

of memory available, thus most of the input/output operations are cached. As a

consequence, these operations target to a great extent the movement of data in the

memory rather than its movement between different devices. It is also possible to

instantiate a different graphics processing unit context using idle central processing units'

resources. The newly created kernel functions are inserted in the waiting queue of the

graphics processing unit and are about to be executed when the necessary resources are

available.

One must take into account that there is a great amount of idle time both on the central

processing unit and on the graphics processing one. According to [12], the idle time of the

CPU is usually cheaper, while the idle time of the GPU is up to 10 times more valuable

compared to the one of the CPU. The Parallel Nsight tool from NVIDIA has the

possibility to generate a special timeline graphic that will depict the amount of idle time

and which kernel functions have generated it. When programmers invoke more kernels on

a distinct graphics processing unit, the kernels will occupy the idle resources. As a

consequence, the initial kernels that were invoked have a slightly increased latency than

the others, but the global performance of the software application increases significantly.

There are many software applications in which a margin of 25%-30% idle time is

completely acceptable. Usually, a software application starts by loading the data from a

data source that operates or is designated to operate at low speeds. Once loaded, the data

is transferred to the graphics processing unit waiting to be processed. After it has been

processed by the CUDA cores, the results are copied back to the central processing unit,

which usually stores it to the initial low speed data source and loads the following data

block that is to be processed, the process thus continues until all the data blocks have been

processed.

By using CUDA streams, the graphics processing unit can be programmed to load the

following block of data from the low speed data source while the current one is being

processed. The whole process is achieved by instantiating several processes: the low

1 https://developer.nvidia.com/parallel-nsight-21-new-features, accessed on 09.27.2016, at 23:00.

https://developer.nvidia.com/parallel-nsight-21-new-features

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

457

speed data source halts the second process while loading the data from the first one.

While the first process is working on the first block of data, the second one accesses the

low speed data source and loads the second block of data, waiting afterwards idle to be

invoked after the first process has finalized the processing. While the first process copies

the results to the host, the second process begins executing the kernel function. This

technique of using CUDA streams and multiple processes makes it possible to efficiently

extend over the processing times of the host and the device in a manner that covers partly

some of the idle times.

Another method for accomplishing a similar outcome consists in the use of CPU threads

in order to make available a certain portion of data jointly with other processes, thus

achieving the synchronization process at a higher speed. A technique called processor

affinity (central processing unit pinning) allows a certain thread belonging to a core to be

linked only to that particular core. This technique can frequently increase the processing

performance as it gives the opportunity to reuse more efficiently the available cache

memory of the respective core. The decision to put into practice this approach must be

weighed against the required level of synchronization that a programmer wants to achieve

on the central processing unit.

When tailoring the mixed approach, the aspect of paramount importance is given by the

manner in which the tasks are divided between the host and the device. If the data set is

thinly dispersed or scattered or it has a very reduced size, the central processing unit

offers the best solution as such data sets types are best processed sequentially.

Nonetheless, as the graphics processing unit offers a huge amount of processing power,

the developer must pay particular attention not to keep the graphics processing unit idle

when programming the application, waiting for the CPU to finish its processing.

A common method is to make use of the central processing unit only in the transfer part

of the tasks. This approach however can sometimes have the drawback of oversaturating a

single central processing unit’s core, so the programmer must profile the application

carefully and identify how much time the graphics processing unit really needs to perform

its tasks [13], [14]. A successful technique that provides very good results consists in

using the central processing unit in the last steps of an algorithm’s computation when the

level of parallelism has decreased dramatically and the workload is not sufficient for the

GPU to harness its huge parallel processing power.

7. CONCLUSIONS

Dividing the tasks that are to be processed appropriately into segments that are suitable

for parallel processing and segments that are better processed serially is the key to

obtaining a high level of performance when developing CUDA Applications. This paper

proposes the use of a mixed approach that does not neglect the role of the central

processing unit nor the one of the graphics processing one. The mixed approach is

fundamental if a programmer is to obtain a powerful software application from the

performance and efficiency point of view.

When implementing the mixed approach, the developer must carefully divide the data and

tasks in view of parallel processing on the Compute Unified Device Architecture enabled

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

458

graphics processing units and in view of sequential processing on the central processing

ones. The programmer must be aware of any dependency problems that may arise within

the source code and solve them promptly without neglecting the total amount of time that

is needed in order to comply with the project’s timeframe.

The developing of the application must take into account the available technical options

of managing appropriately the dataset’s dimension on both the host and the device and the

identification of certain deficiencies in data processing using specialized profiling tools

like the CUDA Profiler and the Parallel Nsight. After having taken into account

thoroughly the analyzed technical aspects, the mixed approach can be successfully

implemented and will lead to significant improvements to both the software performance

of the application and its economic efficiency.

ACKNOWLEDGEMENTS

This paper presents results of the research project: Intelligent system for predicting,

analyzing and monitoring performance indicators and business processes in the field of

renewable energies (SIPAMER), research project, PNII – Collaborative Projects, PCCA

2013, code 0996, no. 49/2014 funded by NASR.

REFERENCES

[1] Lungu Ion, Pîrjan Alexandru, Petroşanu Dana-Mihaela, Optimizing the Computation of

Eigenvalues Using Graphics Processing Units, University Politehnica of Bucharest,

Scientific Bulletin, Series A, Applied Mathematics and Physics, Vol. 74, Number 3/2012,

pp.21-36, ISSN 1223-7027.

[2] Pîrjan Alexandru, Optimization Techniques for Data Sorting Algorithms, The 22nd

International DAAAM Symposium, Annals of DAAAM for 2011 & Proceedings of the

22nd International DAAAM Symposium, Vienna, 2011, pp. 1065-1066, ISSN 1726-9679,

ISBN 978-3-901509-73-5.

[3] Petroşanu Dana-Mihaela, Pîrjan Alexandru, Economic considerations regarding the

opportunity of optimizing data processing using graphics processing units, JISOM, Vol. 6,

Nr. 1/2012, pp. 204-215, ISSN 1843-4711.

[4] Lungu Ion, Căruțașu George, Pîrjan Alexandru, Oprea Simona-Vasilica, Bâra Adela, A Two-

step Forecasting Solution and Upscaling Technique for Small Size Wind Farms located in

Hilly Areas of Romania, Studies in Informatics and Control, Vol. 25, No. 1/2016, pp. 77-86,

ISSN 1220-1766.

[5] Lungu Ion, Bâra Adela, Căruțașu George, Pîrjan Alexandru, Oprea Simona-Vasilica,

Prediction intelligent system in the field of renewable energies through neural networks,

Journal of Economic Computation and Economic Cybernetics Studies and Research, Vol.

50, No. 1/2016, pp. 85-102, ISSN online 1842– 3264, ISSN print 0424 – 267X.

[6] Tăbușcă Alexandru, A new security solution implemented by the use of the multilayered

structural data sectors switching algorithm (MSDSSA), JISOM, Vol.4, No.2 – December

2010, ISSN 1843-4711, Universitary Publishing House, pages 164-168.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

459

[7] Pîrjan Alexandru, Petroşanu Dana-Mihaela, Solutions for developing and extending rich

graphical user interfaces for Office applications, JISOM, Vol. 9, Nr. 1/2015, pp. 157-167,

ISSN 1843-4711.

[8] Pîrjan Alexandru, Petroşanu Dana-Mihaela, Dematerialized Monies – New Means of

Payment, Romanian Economic and Business Review, Vol. 3 Nr. 2/2008, pp. 37-48, ISSN

1842 – 2497.

[9] Pîrjan Alexandru, Petroşanu Dana-Mihaela, A Comparison of the Most Popular Electronic

Micropayment Systems, Romanian Economic and Business Review, Vol. 3, Nr. 4/2008, pp.

97-110, ISSN 1842–2497.

[10] Tăbușcă Alexandru, HTML5 - A new hope and a dream, JISOM; May2013, Vol. 7 Issue 1,

p49, ISSN 1843-4711.

[11] Garais Gabriel Eugen, Security measures for open source website platforms, JISOM.

May2016, Vol. 10 Issue 1, pages 175-185

[12] Cook Shane, CUDA Programming, 1st Edition, A Developer's Guide to Parallel Computing

with GPUs, Morgan Kaufmann, 2012, ISBN :9780124159334.

[13] Lungu Ion, Petroşanu Dana-Mihaela, Pîrjan Alexandru, Optimization Solutions for

Improving the Performance of the Parallel Reduction Algorithm Using Graphics Processing

Units, Informatica Economică, Vol. 16 Nr. 3/2012, pp. 72-86, ISSN 1453-1305.

[14] Lungu Ion, Pîrjan Alexandru, Petroşanu Dana-Mihaela, Solutions for Optimizing The Data

Parallel Prefix Sum Algorithm Using The Compute Unified Device Architecture, JISOM,

Vol. 5, Nr. 2.1/2011, pp. 465-477, ISSN 1843-4711.

