

RESEARCH ISSUES CONCERNING ALGORITHMS USED FOR
OPTIMIZING THE DATA MINING PROCESS

Ion Lungu1

Alexandru Pîrjan2

Abstract

In this paper, we depict some of the most widely used data mining algorithms that have an
overwhelming utility and influence in the research community. A data mining algorithm
can be regarded as a tool that creates a data mining model. After analyzing a set of data,
an algorithm searches for specific trends and patterns, then defines the parameters of the
mining model based on the results of this analysis. The above defined parameters play a
significant role in identifying and extracting actionable patterns and detailed statistics.
The most important algorithms within this research refer to topics like clustering,
classification, association analysis, statistical learning, link mining. In the following, after
a brief description of each algorithm, we analyze its application potential and research
issues concerning the optimization of the data mining process. After the presentation of
the data mining algorithms, we will depict the most important data mining algorithms
included in Microsoft and Oracle software products, useful suggestions and criteria in
choosing the most recommended algorithm for solving a mentioned task, advantages
offered by these software products.

Keywords: data mining optimization, data mining algorithms, software solutions.

Introduction

Data mining consists in techniques and algorithms used for discovering new patterns,
clusters and for classifying different types of data from large datasets. Data mining can
also be considered a research area based on computational methods designed and used to
extract interesting or useful patterns (or knowledge) from real-word datasets. In the last
couple of decades, the technology for generating and storing data greatly evolved and as a
consequence the amount of data stored in databases become significant larger.
Unfortunately, the process of knowledge and pattern discovery developed at a much
smaller extent and so did the human capability of understanding and processing this huge
amount of data.

The data mining process represents a viable solution to a variety of tasks such as
regression, frequent pattern mining, clustering, classification and association discovery. In
this purpose, there are hundreds of algorithms capable of performing these tasks. Data
mining analysts, researchers, developers and programmers must be aware by the

1 PhD, Economic Informatics Department, Academy of Economic Studies, 6, Romana Square, district 1, code
010374, Bucharest, Romania, e-mail: ion.lungu@ie.ase.ro
2 PhD Candidate Faculty of Computer Science for Business Management, Romanian-American University,
1B Expozitiei Blvd., district 1, code 012101, Bucharest, Romania, e-mail: alex@pirjan.com

importance of understanding the way that algorithms work and the possibilities of
applying them.

A data mining algorithm can be regarded as a tool that creates a data mining model. In
order to achieve this, after analyzing a set of data, an algorithm first searches for specific
trends and patterns. The algorithm defines the parameters of the mining model based on
the results of this analysis. These parameters, applied across the entire data set, play a
significant role in identifying and extracting actionable patterns and detailed statistics.

The optimization of specific algorithms deeply affects the data mining process and
therefore developers have implemented a large number of data mining algorithms.
Obviously, there is no appropriate algorithm for all applications, domains or databases.
Data mining researchers and users must choose which is the most suitable algorithm for
solving the problem at hand. Data mining incorporates a broad area of scientific fields’
techniques like statistics, machine learning, artificial intelligence, pattern recognition.

In this paper we present a few of the most important data mining algorithms, whose utility
and influence are overwhelming in the research community. After a brief description of
each algorithm, we analyze its application potential and research issues concerning the
optimization of the data mining process. The most important algorithms within this
research refer to topics like clustering [1], classification [2], association analysis [3],
statistical learning [4], link mining [5].

The k-means algorithm

This algorithm has been developed by researchers Lloyd [6], Forgey, Friedman, Rubin
and McQueen. In 1967 James MacQueen used for the first time the term "k-means" but
the idea was first suggested in 1956 by Hugo Steinhaus. Stuart Lloyd introduced for the
first time the standard algorithm in 1957 as a technique for pulse-code modulation.

The k-means algorithm iteratively partitions a given dataset (containing n observations)
into a users’ specified number of clusters (denoted by k) in which each observation
belongs to the cluster with the nearest mean.

Consider a set of d-dimensional vectors, where each and

The initial cluster representatives consists of points in and are
used in order to initialize the algorithm. This are called centroids. After this stage, the
algorithm keeps iterating two steps until convergence is reached:

• Step 1 – Data Assignment. In this step, a partitioning of the data occurs by
assigning each data point to its closest centroid.

• Step 2 – Relocation of “means”. For each representative cluster, relocation
takes place in order to position each such cluster into the center of all data
points that are assigned to it.

When no more changes in assignments take place, the algorithm is convergent. Each of
the iterations needs comparisons that determine the time complexity of one
iteration.

The term “closest” used in Step 1 refers to the Euclidean distance:

This function decreases whenever the assignment or the relocation steps changes [5] and
so convergence is obtained in a finite number of iterations. The convergence occurs to a
local optimum and is influenced by the initial chosen centroids. In order to overcome this
inconveniences one performs a local limited search of the converged solution or he can
run the algorithm multiple times, choosing each time different initial centroids.

Besides this difficulty, the k-means algorithm is prone to several other problems, one of
them being the cluster model. The whole concept resides on spherical clusters that must
be separable so that the mean value converges towards the center of the cluster. In order
for the assignment to the nearest cluster to be correct, clusters must be of similar size.
This problem can be overcome by subjecting the data to a rescaling process before
clustering. The developer can also use a different distance measure that is more suitable
for the dataset. Banerjee A. has shown that if, during the assignment step, distance is
measured by selecting any member of a very large class of divergences (called Bregman
divergences) without making other changes, the most important properties of k-means are
retained (scalability, linear separation boundaries, convergence etc). If an appropriate
divergence is used, the k-means algorithm is effective for a much larger class of datasets
[6].

Another approach is to perceive the “means” as probabilistic models and not points in
In this case, the Step 1 assigns every data point to the most probable model that could
have generated it. The Step 2 updates the model’s parameters so that they best fit their
assigned datasets. Dhillon, Guan and Kulis suggested a “kernelization” of k-means in
order to allow k-means to deal with clusters that are more complex [5]. Even if the
clusters’ boundaries are still linear in an implicit high-dimensional space, they may
become non-linear if projected back to the original space.

There is a close connection between kernel k-means and spectral clustering. The
K-medoid algorithm and the Fuzzy c-means present several similitudes to the k-means,
but in the K-medoid, centroids must belong to the data set that is clustered while in the
Fuzzy
c-means the algorithm computes fuzzy membership functions for each of the clusters.

The k-means algorithm remains the most widely used and appreciated algorithms for
partitioned clustering despite all of its limitations. The algorithm is scalable, easily
understandable and can be optimized to process streaming data with little effort. KD-trees
and triangular inequality have been employed in order to speed up k-means that it could
process very large datasets. Researches optimized the basic algorithms during the years
and the k-means gradually increased its effectiveness and relevance in the field of data
mining. The pseudocode of the algorithm [5] is presented in Fig.1.

Fig.1. The pseudocode of the k-means algorithm.

The C4.5 and its successor See5/C5.0

Classifiers are of paramount importance in the data mining process. The most commonly
used tools that construct them are the systems classifiers that take as input a collection of
cases. Each case belongs to one of a small number of classes and is characterized by its
values for a fixed set of attributes. The system outputs a classifier that can predict with a
high degree of accuracy, which is the class the case belongs to.

We focus on C4.5 and its successor C5.0. The C4.5 is a descendant of CLS and ID3 [5].
C4.5 generates classifiers in the form of decision trees (like CLS and ID3) but it can also
create classifiers in a rule set form.

The C4.5 first generates an initial tree by applying the divide-and-conquer algorithm,
having a given set S of cases as an input. The tree is declared a leaf if all the cases in S
belong to the same class or S is small. The leaf is labeled with the class that appears most
frequently in S. If this does not happen, a test based on a single attribute is chosen. The
test may have two or more outcomes and represents the root of the tree with one branch
for each possible outcome of the test. The given set of cases is partitioned into subsets

 according to each case and afterwards the same procedure is applied recursively
to each subset. The pseudocode of the algorithm is presented in Fig. 2.

Fig.2. The pseudocode of the C4.5 algorithm.

During the last step, many tests can be run in order to obtain the desired outcome. C4.5
ranks possible tests by using heuristic criteria such as:

• Information gain – used to minimize the total entropy for the subsets , but it
proves to be a biased criterion for tests with more possible outcomes.

• The default gain ratio – is used to divide the information gain mentioned above by
the test outcomes’ information.
The attributes (numeric or nominal) determine the format of the test outcomes.

Sorting on the values of a numeric attribute A and choosing the split between
successive values that maximizes the criterion above, one can obtain the value of the
threshold h. Then, for A there are [7]. If A is an attribute with discrete
values, each value corresponds to one outcome. The values could be grouped into subsets
each of them having a single corresponding outcome.

In order to avoid overfitting, the initial tree must be pruned. A pruning algorithm, based
on the estimation of an error rate, is used. This error rate is associated with a set of N
cases (chosen so that it does not belong to the most frequent class). This method will
provide a pessimistic estimate of the error rate. The C4.5 algorithm does not perform
calculation of but instead of it determines first the binomial probability that a number

of E events to be observed in N trials and second the upper limit of this probability. For
this purpose the user specifies a confidence factor.

The pruning process runs from the leaves to the root. For each leaf having N cases and E
errors, the estimated error will be N times the pessimistic rate mentioned before. If we
consider a subtree, the C4.5 algorithm compares the estimated error if the subtree is
replaced by a leaf with the sum of estimated errors of the branches. If the sum of
estimated errors of the branches is higher than the estimated error, the subtree will be
pruned. In the same way, the algorithm checks the estimated error if one of its branches
replaces the subtree, performs a comparation similar with the one in the previous case and
after that, the tree is adjusted accordingly. After crossing the tree once, the pruning
process is completed.

The information about each class propagates throughout the entire tree and this makes
complex decision trees difficult to understand. In order to simplify the information
processing, the C4.5 algorithm introduced a list of rules of the form “if A and B and C
and ... then class X”. This is an alternative formalism based on grouping together the rules

for each class. For classifying a case, it is enough to find the first rule satisfied in terms of
meeting the necessary conditions. The case will be assigned to a default class if no rule is
satisfied.

When the C4.5 algorithm builds rulesets, it uses the unprunned decision tree. When the
tree is crossed from the root to a leaf, each path becomes a prototype rule. The conditions
of this rule are all the outcomes along the path and the class of the rule represents the
label of the leaf.

Then, the rule is simplified by dropping conditions one by one and determining the effect
of this procedure. When a condition is dropped, two numbers may increase: the number of
cases covered by the rule (denoted by N) and the number of cases that do not belong to
the class nominated by the rule (denoted by E). In such condition, the pessimistic error
rate may decrease. In the next stage, a hill-climbing algorithm is used for dropping
conditions until the pessimistic error rate takes the lowest value.

For each class in turn a subset of simplified rules is selected and this completes the
process depicted above. It is chosen a class which will be considered as default. The
ruleset obtained contains a number of rules much smaller than that of the leaves from the
decision tree after the pruning process. The algorithm’s rulesets have as a main
disadvantage the large amount of resources that they involve, if we refer to CPU
processing time and memory.

In 1977 the C4.5 algorithm was replaced by his successor, a commercial system named
See5/C5.0. In [7] it is depicted a new version that offers new capabilities and an improved
efficiency such as: an ensemble of classifiers constructed by a variant of boosting, new
data types, an improvement in what concerns the interpretability of rulesets, their
predictive accuracy and the scalability of decision trees and rulesets.

There are still open issues in what concerns the decision trees, such as the obtaining of
stable trees or decomposing complex trees into a small collection of simple trees that give
the same result as the complex one [5].

The Apriori algorithm

The notion “frequent itemset” refers to those itemsets whose support is greater than some
user-specified minimum support. Finding such frequent itemsets from a transaction
dataset represents a very popular approach in data mining and the frequent itemset mining
is also related to the obtaining of association rules.

In association rule mining, given a set of "itemsets" (for instance, sets of retail
transactions, each listing individual items purchased), the algorithm attempts to find
subsets which are common to at least a minimum number C (the cutoff, or confidence
threshold) of the itemsets. Apriori uses a "bottom up" approach, where frequent subsets
are extended one item at a time (a step known as "candidate generation") and groups of
candidates are tested against the data. The algorithm terminates when no further
successful extensions are found.

The Apriori algorithm developed by Agrawal and Srikant in 1994 represents an
innovative way to find association rules on a large scale, allowing implication outcomes
that consist of more than one item and it is based on a minimum support threshold. The
Apriori algorithm is used to find frequent itemsets and it uses candidate generation [8].

Apriori assumes that items within a transaction are ordered in lexicographic order. We
will denote by the set of frequent k-size itemsets and by candidate itemsets for the
same level. Taking into account the fact that items must satisfy the minimum support
requirement, Apriori first scans the database for frequent 1-size itemsets and count those
items satisfying the above mentioned condition. In the next stage, the algorithm iterates
the tree steps that follow and extracts all the frequent itemsets. Briefly, the Apriori
algorithm works as follows:

1. Using the frequent itemsets of size k Apriori generates , candidates
itemsets of size k+1 .

2. Apriori then scans the database and calculates the support for each candidate.
3. The algorithm selects all itemsets whose support satisfies the minimum support

requirement and add them to .
The pseudocode of the algorithm is presented in Fig. 3.

Fig.3. The pseudocode of the Apriori algorithm.

The apriori-gen function presented in the above pseudocode generates new candidates

 from the set of frequent k-size itemsets in two steps: a join step and a prune
one. In the join step, the function generates some initial frequent itemsets candidates of
size , denoted by . If and are two k-size frequent itemsets, having in
common their first elements, is the reunion of and . Denoting by
the l-th item, than:

 =
 , = ,

where .

In the second step, the apriori-gen function selects those k-size itemsets in that are
frequent, removes those one that are not and this is how is created. The procedure is

based on the fact that each k-size subset of can be a subset of a (k+1)-size frequent
itemset only if it is a frequent subset.

The function subset mentioned in the above pseudocode locates the transaction t and
within it finds those candidates of the frequent itemsets. By scanning the database, the
Apriori algorithm calculates the frequency just for candidates obtained before. The
Apriori reduces the candidates set’s size thus achieving an improved performance. The
efforts of generating an increased number of candidates and repeatedly scaning the
database can lead to a bottleneck in some situations, like a huge number of frequent
itemsets or large itemsets or when the minimum support is very low. The Apriori
algorithm is characterized by simplicity, ease of implementation and this is the reason
why it is often embraced by data miners.

Apriori algorithm represented a starting point for designing more efficient algorithms in
order to optimize the frequent itemset mining process. The generating candidates model
implemented in Apriori was adopted by a lot of algorithms like those implemented in
partitioning, sampling, vertical data format or hash base technique. The frequent pattern
growth method (FP-growth) offered Apriori the highest degree of improvement because it
has eliminated the candidate generation step [8]. The implemented strategy of FP-growth
is “divide and conquer” and is achieved by:

• the construction of a frequent pattern tree (FP-tree) by using a compressed
frequent itemsets database.

• obtaining a conditional databases set by dividing the compressed database.
Each conditional database has an associated frequent itemset and it is mined
separately.

The algorithm scans the database twice. During the first scan, the frequent items are
obtained, their frequencies are computed and then the items are sorted in a descending
order of their frequencies. The second scan merges each transaction into a prefix tree and
counts common items in different transactions. Each of these common items, called node,
is associated to an item. A pointer, called node-link, is used for linking nodes with the
same label. All the necessary information is stored in a very compact representation,
which follows from the fact that are sorted in the descending order of their frequencies
and thus, nodes are shared by more transactions if they are closer to the root of the tree.
The frequent pattern growth algorithm choses an item (in the increasing order of the
frequency) and then calls itself reccursively on the conditional frequent pattern tree for
extracting frequent itemsets containing the chosen itemset. Obviously, comparing the
Apriori algorithm and its improved version, the frequent pattern growth method (FP-
growth), one can observe that the second method is considerably faster than the original.

The researchers in data mining consider that the frequent pattern mining could also be
improved and developed by taking into consideration other issues like: the usage of
numeric valuable for item, another approach for measures rather than frequency, the
incorporation of taxonomy in items, closed itemsets mining, the implementation of
incremental mining and the usage of richer expressions than itemset [5].

The AdaBoost algorithm

Ensemble learning is the process by which multiple models, such as classifiers or experts,
are strategically generated and combined to solve a particular computational intelligence
problem [9]. Ensemble learning is particularly useful in improving a model’s performance
characteristics and in choosing the most suitable model for a certain problem. Usually
ensemble learning involves multiple learners for solving a particular problem [5].

Ensemble methods offer tremendous potential in solving a problem taking into account
that an ensemble has a significantly better generalization ability that a single learner.
In [7] Yoav Freund and Robert Schapire proposed AdaBoost, a very important ensemble
method based on a solid theoretical foundation offering very accurate prediction and great
simplicity. In the following we will denote by X the instance space, by the
set of class labels, then consider a weak or base learning algorithm and a training set

. The AdaBoost
algorithm consists of the following steps:

• For all the training examples are assigned equal
weights. Using the training set D and the distribution of the weights at the t-th
learning round (denoted by), the algorithm generates (by calling the base
learning algorithm) a weak or base learner .

• Training examples are used in the next stage for testing and increasing the
weight of the incorrectly classified examples, obtaining thus the updated weight
distribution .

• The algorithm uses the updated weight distribution and the training set for
generating (by calling again the base learning algorithm) another weak learner.
The process is repeated T-times.

• By weighting the majority voting of the T weak learners (their weights are
determined during the training process) and the final model is obtained.
The pseudocode of the AdaBoost algorithm is presented in Fig 4.

In [7], Freund and Schapire introduced the Ada-Boost.M1 for dealing with
multi-class problems. This improved version requires for the weak learners to be strong
enough and this requirement is also mandatory on hard distributions that are generated by
the algorithm. There is also a version based on decomposing a multi-class task to a series
of binary ones, called AdaBoost.MH. In the statistic field there have been also developed
versions of AdaBoost algorithm, used for dealing with regression problems.

Fig.4. The pseudocode of the AdaBoost algorithm.

In the literature many interesting topics related to AdaBoost have been researched. One of
them is the test error which often tends to decrease even after the training error is zero.
Schapire et al. argued that AdaBoost can increase the margins further even if the training
error has reached zero. Breiman mentioned that a larger margin does not necessarily equal
a better generalization. Reyzin and Schapire concluded that the margin-based explanation
may still be valid because Breiman had analyzed the minimum margin instead of average
or median margin. Based on Viola and Jones’s work, X. Wu et al. [5] consider that
AdaBoost could be very useful in feature selection, especially when considering that it
has solid theoreticalfoundation. Even if current research mainly focuses on images, X. Wu
et al. think general AdaBoost-based feature selection techniques are well worth studying.

Support vector machines

Support vector machines (SVM) offer robust and accurate methods in today’s machine
learning applications. The number of dimension does not influence the outcome and a
reduced number of examples are enough for the training. When dealing with a two-class
learning task, the SVM tries to identify the best classification function (using a
geometrically approach) that distinguishes between the two classes’ members.

The function separates linearly the two classes with a separating hyperplane that
passes through their middle. The new instance is classified after the function has been
determined by analyzing the sign of the function’s value . If this value is greater
than zero then belongs to the positive class.

The support vector machines find the best function by maximizing the two classes’
margin. The shortest distance between the closest data points to a point on the hyperplane
corresponds to the margin, so even if there is infinity of hyperplanes, the solution to SVM
could be provided only by a few of them. The maximum margin hyperplanes offer the
best generalization and classification performance, so support vector machines try to
discover it.

In order for the maximum margin hyperplanes to be discovered, a support vector machine
classifier tries to maximize the following function with respect to the vectors and the
constant :

where is the number of training examples, are non-negative numbers
and the derivatives of with respect to are zero. The numbers are called the
Lagrange multipliers and the function is called the Lagrangian. The vectors and the
constant define the hyperplane.

Based on some parameters the support vector machines can be modeled as a function
class. A parameter h, also known as the VC dimension represents the different capacity in
learning of the different function classes. The VC dimension measures the cases when the
obtained error rate is zero and so it provides the maximum number of training examples
where the function class can be applied to learn flawlessly.

The actual error on the future data depends by the sum of two elements: the training error
and the parameter h (the VC dimension). If h is minimized, so is the future error, as long
as the training error is also minimized.

In [5] it is presented a “soft margin” idea that tries to extend he SVM algorithm. A slack
variable is introduced for accounting the amount of classification errors by the
function . The variable is interpreted as the distance from the data that has been
classified prone to error to the hyperplane . The original objective minimization
function can be revised using the total cost that was created by the slack variables.

In order for the support vector machines to work when the training data is not linearly
separable a kernel function can be applied if we extend the dot product through a
functional mapping of each to a different space of larger or infinite
dimensions, case in which the equations still hold. Everywhere where appears the dot
product , this is replaced with a kernel function defined by the dot product of the
vectors transformed by applying meaning . A large class of nonlinear
relationship between inputs can be defined by the kernel function.
Support vector machines can also be used to perform numerical calculations such as
regression analysis and to learn to rank elements rather than producing a classification for
individual elements.
A significant drawback for this method is that support vector machines require a
tremendous computational power. In order to solve this problem, one can divide a large
optimization problem into smaller ones, chosen in such a way that every small problem
depends only on a couple of variables and this optimizes the entire process. The
decomposed optimization problems are solved through an iteration process.

The main data mining algorithms implemented in Microsoft and Oracle software
products

In the following we will depict the main data mining algorithms implemented in
Microsoft and Oracle software products. As mentioned before, a data mining algorithm
analyzes a set of data and looks for specific patterns and trends in order to create a model.
Based on the results of this analysis, the algorithm defines the parameters of the mining
model which are then applied across the entire data set to extract patterns and statistics. A
few examples of the multiple forms that data mining models (created by a data mining
algorithm) can take are: rules describing how to conduct the transaction in terms of
grouping products, a prediction method based on decision trees and used for evaluating
whether a customer will buy a product, a forecasting sales model based on mathematical
issues, a description of related cases in a dataset based on a set of clusters and others.
A useful and practical tool in data mining is Microsoft SQL Server Analysis Services,
which provides several algorithms for data mining solutions [10]. A few of the most
important existing algorithm types are included in this tool and described in Fig. 5.

Fig. 5. The most important existing algorithm types
included in Microsoft SQL Server Analysis Services.

One of the most important challenges in data mining is the choosing of the most suitable
algorithm for solving a specific task and this should be made taking into account some
important facts as:

• a business task can be performed using different algorithms
• the result produced by each algorithm is different
• there are some algorithms which can produce more types of results. For

example, Microsoft Decision Trees algorithm could be used for prediction
and also for reducing the number of columns in a dataset based on the fact
that the decision tree identifies columns that do not affect the final mining
model.

• for obtaining a single data mining solution, algorithms could be used
together, not independently. For example, some algorithms could be used for
exploring data and after that, some other algorithms could be used in order to
predict a specific outcome based on that data.

• separate tasks could be performed by multiple algorithms within one
solution. For example, in order to obtain financial forecasting information
one can use a regression tree algorithm first and then a rule-based algorithm
that is best suitable to perform a market basket analysis.

• using mining models one can facilitate the prediction of values, the
production of data summaries, the finding of some hidden correlations.

Below are presented some suggestions and criteria useful for choosing the most
recommended algorithm for solving the mentioned task (Table 1).

Task Example Microsoft algorithms to use

Predicting a
discrete attribute

Predict whether the recipient
of a targeted mailing

campaign will buy a product

Microsoft Decision Trees
Algorithm

Microsoft Naive Bayes
Algorithm

Microsoft Clustering
Algorithm

Microsoft Neural Network
Algorithm

Predicting a
continuous
attribute

Forecast next year's sales

Microsoft Decision Trees
Algorithm

Microsoft Time Series
Algorithm

Predicting a
sequence

Perform a clickstream analysis
of a company's Web site

Microsoft Sequence
Clustering Algorithm

Finding groups of
common items in

transactions

Use market basket analysis to
suggest additional products to

a customer for purchase

Microsoft Association
Algorithm

Microsoft Decision Trees

Algorithm

Finding groups of
similar items

Segment demographic data
into groups to better

understand the relationships
between attributes

Microsoft Clustering
Algorithm

Microsoft Sequence

Clustering Algorithm
Table 1. Suggestions and criteria useful for choosing

the most recommended algorithm.

One of the options included in Oracle Corporation's Relational Database Management
System Enterprise Edition is the Oracle Data Mining (ODM) [11], which:

• contains several data mining and data analysis algorithms designed for
classification, clustering, prediction, associations, regression, anomaly
detection, feature selection, feature extraction and specialized analytics.

• offers facilities for the creation of data mining models, for their management
and deployment.

• implements inside the Oracle relational database a variety of data mining
algorithms, integrates these implementations into the database’s kernel and
as a consequence eliminates some operations: the extraction and transfer of
data through mining servers.

The secure managing of models and the efficient execution of SQL queries on large
volumes of data are facilitated by the database platform. A general unified interface for
data mining functions is provided by a few generic operations (around which the system
is organized) including functions designed to create data mining models, to apply, test and
manipulate them. Created and stored as database objects, these models are managed
within the database as all the other contained objects.

After a data mining program generates a model, it could be used by the same data mining
program to derive predictions or descriptions of behavior. In order to obtain predictions,
the new generated model can be applied to all the new information. The technique
implemented in the data mining model and used to make predictions about the studied
behavior is called “scoring” and the prediction offered by the model is called “the score”.
ODM offers some Oracle SQL functions for scoring data stored in the database and
therefore one can efficiently use the features offered by Oracle SQL: the ability to
pipeline and manipulate the results over several levels and also the parallelizing and
partitioning of data access for performance.

The data never leaves the database: data, data preparation, model building and model
scoring results remain in the database. This enables Oracle to provide an infrastructure for
application developers to integrate data mining seamlessly with database applications.

Oracle Data Mining (ODM) provides a broad suite of data mining techniques and
algorithms to solve many types of business problems [11]. These data mining techniques
and algorithms are presented below (Table 2).

Techniques Applicability Oracle Data Mining
Mining Algorithms

Classification

Most commonly used technique for predicting a
specific outcome such as response/no-response,

high /medium/low-value customer, likely to
buy/not buy.

Logistic Regression
Naive Bayes

Support Vector
Machine

Decision Tree

Regression

Technique for predicting a continuous numerical
outcome such as customer lifetime value, house

value, process yield rates.

Multiple Regression

Support Vector
Machine

Attribute
Importance

Ranks attributes according to strength of
relationship with target attribute. Use cases
include finding factors most associated with

customers who respond to an offer, factors most
associated with healthy patients.

Minimum
Description Length

Anomaly
Detection

Identifies unusual or suspicious cases based on
deviation from the norm. Common examples

include health care fraud, expense report fraud,
and tax compliance.

One-Class Support
Vector Machine

Clustering

Useful for exploring data and finding natural
groupings. Members of a cluster are more like

each other than they are like members of a
different cluster. Common examples include

finding new customer segments, and life
sciences discovery.

Enhanced K-Means

Orthogonal
Partitioning
Clustering

Association

Finds rules associated with frequently co-
occuring items, used for market basket analysis,

cross-sell, root cause analysis. Useful for product
bundling, in-store placement, and defect

analysis.

Apriori

Feature
Extraction

Produces new attributes as linear combination of
existing attributes. Applicable for text data,

latent semantic analysis, data compression, data
decomposition and projection, and pattern

recognition.

Non-negative Matrix
Factorization

Table 2. Data mining techniques and algorithms provided by Oracle Data Mining.

Implemented in the Oracle Database kernel, Oracle Data Mining models are first class
database objects, while Oracle Data Mining processes maximize scalability and make
efficient use of system resources through the usage of built-in features of Oracle
Database. Data mining within Oracle Database offers many advantages, as shown in
Table 3.

The
Advantage Details

No Data
Movement

• Some data mining products require that the data be exported
from a corporate database and converted to a specialized
format for mining.

• With Oracle Data Mining, no data movement or conversion is
needed.

• This makes the entire mining process less complex, time-
consuming, and error-prone.

Security

• Your data is protected by the extensive security mechanisms of
Oracle Database.

• Moreover, specific database privileges are needed for different
data mining activities.

• Only users with the appropriate privileges can score (apply)
mining models.

Data
Preparation and
Administration

• Most data must be cleansed, filtered, normalized, sampled, and
transformed in various ways before it can be mined.

• Up to 80% of the effort in a data mining project is often
devoted to data preparation.

• Oracle Data Mining can automatically manage key steps in the
data preparation process.

• Additionally, Oracle Database provides extensive
administrative tools for preparing and managing data.

Ease of Data
Refresh

• Mining processes within Oracle Database have ready access to
refreshed data.

• Oracle Data Mining can easily deliver mining results based on
current data, thereby maximizing its timeliness and relevance.

Oracle
Database
Analytics.

• Oracle Database offers many features for advanced analytics
and business intelligence.

• Oracle Data Mining can easily be integrated with other
analytical features of the database, such as statistical analysis
and OLAP.

• See "Oracle Data Mining and Oracle Database Analytics".

Oracle
Technology

Stack

• You can take advantage of all aspects of Oracle's technology
stack to integrate data mining within a larger framework for
business intelligence or scientific inquiry.

Domain
Environment

• Data mining models have to be built, tested, validated,
managed, and deployed in their appropriate application domain
environments.

• Data mining results may need to be post-processed as part of
domain specific computations (for example, calculating
estimated risks and response probabilities) and then stored into
permanent repositories or data warehouses.

• With Oracle Data Mining, the pre- and post-mining activities
can all be accomplished within the same environment.

Application
Programming

Interfaces

• PL/SQL and Java APIs and SQL language operators provide
direct access to Oracle Data Mining functionality in Oracle
Database.

Table 3. Advantages of data mining within Oracle Database.

Conclusions and further research

Data mining comprises techniques and algorithms for determining interesting patterns
from large datasets and has applications in a large set of domains including business and
science, such as web analysis, targeted marketing, disease diagnosis and outcome
prediction, weather forecasting, credit risk and loan approval, customer relationship
modeling, fraud detection and many others. The above mentioned techniques cover a
wide area of fields integrating statistics, pattern recognition, database systems, artificial
intelligence and machine learning in the purpose of analyzing huge amounts of data. In
order to perform different data analysis tasks such as clustering, classification, frequent
pattern mining and others, researchers have created, developed and implemented hundreds
(or even more) data mining algorithms. The understanding of the usage and improvement
of those algorithms are real challenges for scientists, analysts, researchers, practitioners.

In this paper we have depicted some of the most widely used data mining algorithms. The
main criteria used for choosing them was their utility and influence in the research
community. They refer to topics such as: clustering, classification, association analysis,
statistical learning, link mining. Each algorithm’s study starts with its brief description
followed by its application potential and research issues concerning the optimization of
the data mining process.

We have also depicted the most important existing data mining algorithms included in
Microsoft and Oracle software products, suggestions and criteria useful for choosing the
most recommended algorithm for solving a mentioned task, advantages offered by these
software products. Both products can be used to build stable, efficient system. The
stability, effectiveness of applications and databases depend rather on the experience of
the database developers and database administrators than on the database's provider.

An important and interesting issue regarding the data mining process is real time data
mining, which will enable scientists to develop researches on a scale that seemed
unimaginable until recently [8]. In order to improve data analysis, both hardware
architectures and data mining algorithms must properly manage and process huge
volumes of data. This improvement could be achieved through the development and
implementation of new parallel processing algorithms and novel hardware architectures.
In recent years there have been developed new techniques and data mining methods
useful for the discovering of new patterns, clusters and for the classifying of different
types of data. The optimization of a data mining algorithm must take into account some
targets, as the improvement of the data extraction process quality and also the reducing of
the response time.

Further research in the field of data mining algorithms used for optimizing the data
mining process must refer to both improving existing algorithms and developing new
ones, based on modern and powerful hardware architecture. As an example, the Compute

Unified Device Architecture, a revolutionary software and hardware parallel computing
architecture from NVIDIA, allows the graphics processor to execute programs written in
C, C++, FORTRAN, OpenCL, Direct Compute and other languages. Some algorithms
based on the Compute Unified Device Architecture programming model, implementing
some kind of parallelism and based all on the MapReduce programming model are
depicted in [8], [12].

References

[1] Chen JR (2007) Making clustering in delay-vector space meaningful. Knowl Inf Syst
11(3):369–385

[2] Kukar M (2006) Quality assessment of individual classifications in machine learning
and data mining, Knowl Inf Syst 9(3):364–384

[3] Ahmed S, Coenen F, Leng PH (2006) Tree-based partitioning of date for association
rule mining. Knowl Inf Syst 10(3):315–331

[4] Fung G, Stoeckel J (2007) SVM feature selection for classification of SPECT images
of Alzheimer’s disease using spatial information. Knowl Inf Syst 11(2):243–258

[5] Xindong Wu, Vipin Kumar, The Top Ten Algorithms in Data Mining, Chapman and
Hall/CRC 2009 ISBN: 978-1-4200-8964-6

[6] Lloyd SP (1957) Least squares quantization in PCM, IEEE, Trans Inform Theory
(Special Issue on Quantization), vol IT-28, pp 129–137, March 1982

[7] Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning
and an application to boosting. J Comput Syst Sci 55(1):119–139

[8] Pirjan A., The optimizațion of algorithms in the process of temporal data mining
using the Compute Unified Device Architecture, Database Systems Journal,
nr.1/2010 , http://www.dbjournal.ro/

[9] Polikar, R., “Ensemble learning,” Scholarpedia, vol. 4, no. 1, pp. 2776, 2009
[10] http://technet.microsoft.com/en-us/library/ms175595.aspx
[11] http://download.oracle.com/docs/cd/B28359_01/datamine.111/b28129/intro_concept

s.htm
[12] Pirjan A., Algorithms for extracting frequent episodes in the process of temporal data

mining, Informatica Economică Journal, Vol. 14 No. 3/2010, 165-169,
http://www.revistaie.ase.ro/

	RESEARCH ISSUES CONCERNING ALGORITHMS USED FOR OPTIMIZING THE DATA MINING PROCESS
	Ion Lungu
	Alexandru Pîrjan
	Abstract
	Keywords: data mining optimization, data mining algorithms, software solutions.
	Introduction
	The k-means algorithm
	The C4.5 and its successor See5/C5.0
	Fig.2. The pseudocode of the C4.5 algorithm.

	The Apriori algorithm
	The AdaBoost algorithm
	Support vector machines
	The main data mining algorithms implemented in Microsoft and Oracle software products
	Conclusions and further research
	References

